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MOA-II Galactic Microlensing Constraints:
The Inner Milky Way has a Low Dark Matter Fraction and a Maximum Disk



Outline

1.Measuring the 3D shape of the bulge (5 min) 
2.The Bar Outside the Bulge: The ‘Long Bar’ (10 min) 
3.Made-to-measure N-body models of the bulge (5 min) 
4.Galactic Microlensing (10 min) 
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Red clump stars

• Helium Core Burning Stars 
• Standard Candle with: �(Ks) ⇠ 0.17
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Line-of-sight density estimation
• Fit background to region 

outside Bulge’s RC stars 

• Statistically identified red 
clump stars are 
convolution of line-of-
sight density with 
luminosity function.  

• Deconvolve to estimate 
density using a slight 
variation on Lucy-
Richardson algorithm

3D Structure of the Milky Way at |l | < 10

�
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• Combine ~300 line-of-sight density 
estimates in 3D density 

• 3D map non-parametric, assuming 
only 8-fold mirror symmetry, with 
small departures  

1.Measuring the 3D Shape of the Bulge
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1.Measuring the 3D Shape of the Bulge
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The Long Bar of the Milky Way
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• The bar outside the bulge called the long bar was suggested by Hammersley et al. (1994). 

• But we still have very few details or understanding

• Best previous investigation below. Long bar seems misaligned to bulge. Do we have two 

bars in the Milky Way? 
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• Extinction is more challenging. Can’t make an extinction map, 
instead correct on a star-by-star basis 

Differences to the Bulge

• Signal-to-noise of RCGs is smaller i.e. background of 
foreground disk stars is higher, number of RCGs lower.

Can’t field-by-field non-parametrically estimate density. Two 
approaches: 
1. Fit to clump in each field: gives a view as close to data as 

possible. 
2. Fit parametric models. Improves signal-to-noise by 

connecting fields and fitting for only parameters.

µK = Ks �

Extinction Correctionz }| {
AKs
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Typical Field
At l=18.5◦ b=0.9◦ with size ∆l=1◦ ∆b=0.3◦

To each field fit Gaussian for RCGs + Exponential for background:

Ks-band
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Results of fitting to the >1000 fields
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Distance to bar RCGs

• Only bar red clump giants shown 
• No sharp transition from bulge to long bar 
• Bar extends to all the way to |b|~5◦ at l~20◦
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Background subtracted number of RCGS in different b slices

NOT deconvolved. Instead the density plotted if RCGs were 
perfect standard candles.

Still a useful way of visualising the data: we can see the data is 
much closer to bar angle of 27◦ than the previous measurement 
of 45◦

Log Background subtracted number of stars [kpc−3]
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Vertical Structure

• Examine number of RCGs in 
the bar vs l. Vertical structure 
better represented by two 
exponentials:
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• Thicker component has scale 
height 2◦ = 180pc. Similar to 
thickness of thin disk in solar 
neighborhood - we call it the 
thin bar by analogy.

• Thinner component has scale 
height 0.5◦ = 45pc. Exists mostly 
near bar end. We call it the 
super-thin bar by analogy to 
some external galaxies 
(Schechtman-Rook+2013).


• Related to recent (~1Gyr) star 
formation? Stars captured by 
bar?  

Vertical Structure: ‘Thin Bar’ and ‘Super-Thin Bar’
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Vertical Structure: Alignment with Galactic Plane

• If we assume Sgr A* is in 
the physical Galactic mid-
plane and sun is 25pc 
above the mid-plane we 
get the blue line.

• Bar seems aligned to this 
at <0.05◦ =5 pc !
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Modelling the Bar

• N-body bar fitted to the bulge.

• Exponential in magnitude to 

represent inadequate 
background: N-body disk 
scale length too short.


• Parametric model for 
inadequate bar outside the 
bulge

Convolve density with a luminosity 
function constructed from 
isochrones to predict number 
counts in all fields

Density made up of:

Adjust density until predicted 
number counts agree with 
observed
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Parametric model tells us: 
• Long bar angle is (28-33)◦ - Aligned 

with the bulge! 

• Bar half length is 5.0±0.2 kpc.  

• Surprisingly long, therefore likely to 
have a greater influence on disk in 
solar neighbourhood, and on the gas. 

• Bar mass is 1.8x1010 M⊙ 
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MOA-II Galactic Microlensing Constraints: 
The Inner Milky Way has a Low Dark Matter Fraction and a 

Maximum Disk

Chris Wegg, Ortwin Gerhard & Matthieu Portail

Microlensing event not to scale…

Microlensing of Milky Way stars allows the stellar mass-to-
light vs dark matter degeneracy to be uniquely broken
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We can recover the 
stellar mass required by 
the model to match the 
BRAVA dispersion in its 
dark matter halo.

Portail, CW, OG+ MNRAS (2015)
Made-to-measure N-body models of the bulge

Self-graviting N-body model

Model observables Real data with errors

Compare

Update the particle 
masses

Matthieu Portail
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• We measure the total mass in the bulge ± (2.2 x 1.4 x 1.2kpc) 
to be 1.84 1010 Mʘ

• We find a systematic error on the total mass of less than 5% 

• We have equally good models of the bulge with different dark 
matter fraction.

Decreasing DM fraction

Made-to-measure N-body models of the bulge
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Microlensing of Milky Way stars allows us to break the 
mass-to-light vs dark matter degeneracy
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Microlensing Optical Depth
• Fraction of observed stars that are strongly lensed 
• For a star at a distance Ds given by:

⌧(Ds) =
4⇡G

c2

Z
⇢l(Dl)

✓
1

Dl
� 1

Ds

◆
Dl dDl

• Theoretically very attractive: Depends only on the 
density of lenses. Not on mass and velocity 
distribution 

Two Major Issues:
1. Finite length of observations limits range of event 

timescales. A dynamical model and mass distribution 
is needed to correct for this 

2. What is observed is an average over observable stars 
i.e. brighter than magnitude cut
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Accurate comparison requires modelling of magnitude 
distribution and source selection

2. What is observed is an average over observable stars i.e. 
brighter than magnitude cut

• Usua l l y a power- l aw β -
parameterisation for luminosity 
function assumed (red lines) 

• Using models + isochrones 
things are more complex (black 
line) 

• Variation in OGLE-III data  seen 
(grey points)
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• To N-body bulge models add a double exponential disk

• Local disk properties:
H� = 0.3 kpc , ⌃� = 38 M� pc�2

• Allow the disk to be flared i.e. scale height decrease 
inwards. We found the long bar had a scale height 
of H4.5=0.18 kpc.


• Uncertainty on the disk of the inner Milky Way 
parameterised by 2 quantities: Rd & H4.5

Microlensing Model

Inner disk is highly uncertain
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Rd = 2.15 kpc & H4.5 = 0.18 kpc• Fiducial model: M90 & 

Comparison to maps from MOA-II (Sumi+2013):

Agreement seems qualitatively good

Days
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Timescale Distribution

• Timescale distribution is 
the timescale distribution 
for 1Mʘ convolved with the 
scaled mass distribution. 

• Can therefore be used to 
place constraints on the 
mass function and IMF
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Timescale Distribution

• Fiducial dynamical model 
with different IMFs 

• Model matches very well 
with Kroupa or especially 
Calamida log-normal 
IMF:                            vs                                       

       in OGLE-III 

< log tE >= 1.21

< log tE >= (1.275± 0.008)

• Low number of brown 
dwarfs required  (similar 
to but less than Awiphan
+15 with Besancon + 
MOA-II)
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• Sho r t e r d i sk sca l e 
lengths place more 
mass in front of bulge→ 
increase optical depth 

• For this bulge model 
short disk scale lengths 
required 

• Driven by data at |b|<3o. 
Even shortest disk scale 
lengths undershoot 3 of 
4 points here. 

τ
×

10
6

1

10
Fiducial Model

b
−6 −5 −4 −3 −2

τ
×

10
6

1

10
Fiducial Model
Rd = 2.0 kpc
Rd = 3.2 kpc

b
−6 −5 −4 −3 −2

τ
×

10
6

1

10
Fiducial Model
Rd = 2.0 kpc
Rd = 3.2 kpc
H4.5 = 0.18 kpc
H4.5 = 0.30 kpc

b
−6 −5 −4 −3 −2

Optical Depth Comparison



Chris Wegg

• Sho r t e r d i sk sca l e 
lengths place more 
mass in front of bulge→ 
increase optical depth 

• For this bulge model 
short disk scale lengths 
required 

• Driven by data at |b|<3o. 
Even shortest disk scale 
lengths undershoot 3 of 
4 points here. 
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Conclusions

• We have a measurement of the 3D shape of the bulge using RCGs as 
tracers. 

• Bar outside the bulge has length 5.0±0.2 kpc, angle (28-33)◦. Appears 
naturally innately connected to barred bulge. 

• Two components in bar. A 180pc scale height thin bar, analogous to the 
solar neighbourhood thin disk. A 45pc scale height super-thin bar, 
mostly towards bar end. Related to more recent, 1Gyr ago, star 
formation? 

• Constructing made-to-measure N-body models we find the total mass of 
the bulge to be 1.84 1010 Mʘ with an accuracy <5% (systematics). This 
mass is degenerate between dark and stellar matter.


