Stellar Nucleosynthesis and Galactic Chemical Evolution in the Era of Large Spectroscopic Surveys

DONATELLA ROMANO

INAF, Osservatorio Astronomico di Bolognár

CHEMICAL EVOLUTION MODELS

(Tinsley 1980; Pagel 1997; Matteucci 2001)
GAS INFALL/ACCRETION

CHEMICAL EVOLUTION MODELS

(Tinsley 1980; Pagel 1997; Matteucci 2001)
GAS INFALL/ACCRETION

STAR FORMATION

OUTFLOWS

STELLAR FEEDBACK (MASS, ENERGY)

Low- and intermediate-mass stars ($1<\mathrm{m} / \mathrm{M}_{\odot}<6-8$)
(super-AGB stars; $6<m / M_{\odot}<10$)
Massive stars $\left(m>10 M_{\odot}\right)$

ANT\|-CORRELATIONS \|N GLOBULAR CLUSTERS

Data from Carretta (2006), Gratton et al. (2007), Carretta et al. (2007a, b; 2009a, b; 2010)

Figure from Conroy (2011 [ApJ, 758, 21])

ANTI-CORRELATIUONS \|N GLOBULAR CLUSTERS

Mucciarelli et al. (2009 [ApJ, 695, L134])

- Odd-Z element with single stable isotope $\left({ }^{23} \mathrm{Na}\right)$.
- On a Galactic scale, mainly synthesized during hydrostatic carbon burning in massive stars (Salpeter 1952 [ApJ, 115, 326]; Cameron 1959 [ApJ, 130, 429]). Final abundance sensitive to the neutron excess (Woosley \& Weaver 1995 [ApJS, 101, 181]).
- Also produced in high-temperature H -burning regions through the NeNa cycle (Salpeter 1955 [Phys. Rev., 97, 1237]; Denisenkov \& Denisenkova 1990 [Sov. Astr. Letters, 16, 275]). In low- and intermediate-mass stars, Na produced by the NeNa cycle can be mixed to the stellar surface, either during the first dredge-up or later during the asymptotic giant branch (AGB) phase (El Eid \& Champagne 1995 [ApJ, 451, 298]; Mowlavi 1999 [A\&A, 350, 73]; Karakas 2010 [MNRAS, 403, 1413]).
- Odd-Z element with single stable isotope $\left({ }^{27} \mathrm{Al}\right)$.
- Mainly synthesized during carbon and neon burning in massive stars (e.g. Arnett \& Thielemann 1985 [ApJ, 295, 589]).
- Also produced through the MgAl cycle in the internal convective regions of AGB stars of initial mass above $\sim 5 \mathrm{M}_{\odot}$ undergoing hot bottom burning (Ventura et al. 2013 [MNRAS, 431, 3642]; Doherty et al. 2014 [MNRAS, 437, 195]).

SOD\|UM MEASUREMENTS IN FIELD STARS

GâçES0 Gaia-ESO Public Survey data - Smiljanic, Romano, Bragaglia \& GES Consortium (2016 [A\&A, submitted])
(Overview talk
by S. Randich)

See Smiljanic et al. (2014 [A\&A, 570, A122]) for details about the analysis of UVES spectra in GES

ALUMINIUM MEASUREMIENTS IN FIELD STARS

GâçES0 Gaia-ESO Public Survey data - Smiljanic, Romano, Bragaglia \& GES Consortium (2016 [A\&A, submitted])
(Overview talk
by S. Randich)

See Smiljanic et al. (2014 [A\&A, 570, A122]) for details about the analysis of UVES spectra in GES

OBSERVATIIONS VS GCE MODEL PREDICTIONS

- Non-LTE corrections on a line-by-line basis using grids from Lind et al. (2011 [A\&A, 528, A103])
- Ages for field dwarfs computed following Bergemann et al. (2014 [A\&A, 656, A89])

OBSERVATIIONS VS GCE MODEL PREDICTIONS

- Ages for field dwarfs computed following Bergemann et al. (2014 [A\&A, 656, A89])
- (381 dwarfs retained, with fractional age error $<30 \%$)

OBSERVATIIONS VS GCE MODEL PREDICTIONS

[Fe / H]

- Part of the spread could be due to radial migration of stars born at different Galactocentric radii $\left(v_{\mathrm{SF}}\left(\mathrm{R}_{\mathrm{GC}}\right)\right.$ as in Spitoni, Romano, Matteucci \& Ciotti 2015)
- Do the models lack some site of Na production at late stages?

NA-O ANTII-CORRELATIION IN GLOBULAR CLUSTIERS

a) Mass-segregated cluster

FMOM observations to theory...

c) Turbulent structure for ISM

Figure from Krause et al. (2013 [A\&A, 552, A121])

Data from Carretta (2006), Gratton et al. (2007), Carretta et al. (2007a, b; 2009a, b; 2010)

Figure from Conroy (2011 [ApJ, 758, 21])

NA-O ANTII-CORRELATIION IN GLOBULAR CLUSTIERS

a) Mass-segregated cluster

c) Turbulent structure for ISM observations to theory...

Figure from Krause et al. (2013 [A\&A, 552, A121])

WHO ARE THE POLLUTERS?

- AGB stars (D'Ercole et al. 2008 [MNRAS, 391, 825]) - FRMSs (Decressin et al. 2007 [A\&A, 475, 859])
- Pop III stars (Choi and Yi 2007 [MNRAS, 375, L1])
- Massive binaries (de Mink et al. 2009[A\&A, 507, L1])

Data from Carretta (2006), Gratton et al. (2007), Carretta et al. (2007a, b; 2009a, b; 2010)

Figure from Conroy (2011 [ApJ, 758, 21])

NA-O ANTII-CORRELATIION IN GLOBULAR CLUSTIERS

Data from Carretta (2006), Gratton et al. (2007), Carretta et al. (2007a, b; 2009a, b; 2010)
a) Mass-segregated cluster

From observations to theory...

Figure from Krause et al. (2013 [A\&A, 552, A121])

WHO ARE THE POLLUTERS?

- AGB stars (D'Ercole et al. 2008 [MNRAS, 391, 825])
- FRMSs (Decressin et al. 2007 [A\&A, 475, 859])
- Pop III stars (Choi and Yi 2007 [MNRAS, 375, L1])
- Massive binaries (de Mink et al. 2009[A\&A, 507, L11])

Figure from Conroy (2011 [ApJ, 758, 21])

3D HYPDRODYNAMICAL SIMULATIIONS@CINECA, BOLOGNA

Calura, Few, Romano, \& D'Ercole (2015 [ApJ Letters, 414, 323 1]) Calura et al. (2016 [in prep.])

- Using Adaptive Mesh Refinement code Ramses (Teyssier 2002 [A\&A, 385, 624])
- Gas-rich GC precursor

$$
\begin{aligned}
& \left(M_{\text {proto-GC }} \sim 10^{7} \mathrm{M}_{\odot} ;\right. \\
& \left.M_{\text {stars }} 3 \times 10^{6} \mathrm{M}_{\odot}\right)
\end{aligned}
$$

- Initial mass distribution: Plummer (1911),

$$
a=27 \mathrm{pc}
$$

- Self gravity:YES

- Dark matter: NO
- Computational box: (162 pc) ${ }^{3}$

- Max res $=0.6 \mathrm{pc}$

SDSS and other ongoing wide-field, deep photometric surveys are changing our view of the Milky Way's satellite population…

First-year DES data: eight new satellite systems (Bechtol et al. 2015 [ApJ, 807, 50])
Ultra-Faint Dwarfs:

- Least luminous, $L_{\text {tot }}=3 \times 10^{2}-10^{5} L_{\text {。 }}$
- Most dark matter dominated, $M / L=10^{2}-10^{3} M d L_{o, V}$
- Least chemically enriched, $[\mathrm{Fe} / \mathrm{H}] \sim-2.5$ dex

IS THERE A LINK BETWEEN GCs AND UFDs?

Romano, Calura et al. (2016 [in prep.])

SIMULATING THE BOOTES I ULTRA-FAINT DWARF:

$$
\begin{aligned}
& M_{\mathrm{tot}} \sim 6 \times 10^{7} \mathrm{M}_{\odot} \\
& M_{\text {stars }} \sim 6 \times 10^{4} \mathrm{M}_{\odot} \\
& r_{\text {eff }}=250 \mathrm{pc}
\end{aligned}
$$

Self gravity: NO
Dark matter:YES
Computational box: $(2 \mathrm{kpc})^{3}$
Max res <1 pc

NO DETAILED CHEMISTRY (YET)

SUMMARY AND FUTURE WORK

- Except for a handful of elements, whose nucleosynthesis in stars is well understood by now, large uncertainties still affect chemical evolution model predictions.

SUMMARY AND FUTURE WORK

- Except for a handful of elements, whose nucleosynthesis in stars is well understood by now, large uncertainties still affect chemical evolution model predictions.
- This is especially true for Na and Al. These elements define characteristic anti-correlations in globular cluster stars, that are not seen in the Galactic field.

SUMMARY AND FUTURE WORK

- Except for a handful of elements, whose nucleosynthesis in stars is well understood by now, large uncertainties still affect chemical evolution model predictions.
- This is especially true for Na and Al. These elements define characteristic anti-correlations in globular cluster stars, that are not seen in the Galactic field.
- Next steps:
- Test updated yields, by means of pure chemical evolution models for the Milky Way
- Implement the detailed chemistry in 3D hydrodynamical simulations and study the formation and evolution of the smallest Milky Way companions

SUMMARY AND FUTURE WORK

- Except for a handful of elements, whose nucleosynthesis in stars is well understood by now, large uncertainties still affect chemical evolution model predictions.
- This is especially true for Na and Al . These elements define characteristic anti-correlations in globular cluster stars, that are not seen in the Galactic field.
- Next steps:
- Test updated yields, by means of pure chemical evolution models for the Milky Way
- Implement the detailed chemistry in 3D hydrodynamical simulations and study the formation and evolution of the smallest Milky Way companions
- Eventually get a comprehensive view of the Galactic halo formation

