The Gaia-ESO Survey

Sofia Randich – INAF/Arcetri

Galactic Surveys: New Results on Formation, Evolution, Structure and Chemical Evolution of the Milky Way, Sesto Pusteria Jan. 25-29 2016

- Co-PIs: Gerry Gilmore & Sofia Randich
- Steering group: 12 members+ CoPIs
- 450++ Co–Is, 95+ institutes
- 20 WGs

The Consortium

Co-FIS: Gerry Gumore...., Sona Randkin.....

Cols: M. Asplund¹⁴⁹⁰, J. Binney¹⁶¹¹, P. Bonifacio¹⁵⁸⁸, J. Drew¹⁶⁶⁸, S. Feltzing¹⁴⁷³, A. Ferguson¹⁶⁴⁹, R. Jeffries¹¹³², G. Micela¹³⁴⁴, I. Negueruela⁷⁶⁰⁹, T. Prusti¹²⁷⁸, H-W. Rix¹⁴⁶⁹, A. Vallenari¹³⁴³, U. Abbas¹³⁴⁶, D. Aden¹⁴⁷³, V. Adibekyan¹²⁵⁰, C. Aerts¹²⁹⁹, L. Affer¹³⁴⁴, J-M. Alcala¹³⁴⁰, E. Alfaro¹³⁹², C. Allende Prieto¹³⁹³, G. Altavilla²⁵³⁰, J. Alves¹⁸⁶³, T. Antoja¹⁴²², A. Aparicio¹¹⁹³, F. Arenou¹¹⁸⁸, C. Argiroffi¹⁶⁸³, A. Asensio Ramos¹¹⁹³ C. Babusiaux¹⁵⁶⁵, C. Bailer-Jones¹⁴³⁹, L. Balaguer-Nunex¹⁶²¹, G. Barentsen¹⁶⁶⁸, A.Bayo¹²⁶¹, B. Barbuy¹⁸²⁶ G. Barisevicius¹¹⁷⁶, D. Barrado y Navascues¹⁰⁶⁸, C. Battistini¹⁴⁷³, I. Bellas-Velidis¹³⁵⁵, M. Bellazzini¹³²⁹, V. Belokurov¹³⁷⁰, T. Bensby¹⁴⁷³, M. Bergemann¹⁴⁹⁰, G. Bertelli¹³⁴³, K. Biazzo¹³⁴⁰, O. Bienavme¹⁵⁴², S. Blanco Cuaresma¹⁵⁹², J. Bland-Hawthorn²⁰⁴⁴, R. Blomme¹⁶⁵⁰, C. Boeche²¹¹², S. Bonito¹³⁴⁴, S. Boudreault¹³⁹³, J. Bouvier¹⁴⁴⁹, A. Bragaglia¹³³⁷, I. Brandso¹²⁰⁰, A. Brown¹⁷¹⁶, E. Brugaletta¹⁸⁷⁴, J. de Brujne¹²⁷⁸, M. Burleigh¹²⁴⁴, J. Caballero⁸⁵⁴⁵, E. Caffau²¹³², F. Calura¹³³⁷, T. Cantat¹³⁴³, R. Capuzzo-Dolectta¹⁸⁵⁷, M. Caramazza¹³⁴⁴. G. Carraro¹²⁶¹, L. Casagrande¹⁴⁹⁰, S. Casewell¹²⁴⁴, S. Chapman¹¹⁷⁰, C. Chiappini¹¹³⁵, Y. Chorniy¹³⁷⁶, N. Christlieb¹³⁸², M. Cignoni⁷⁵¹⁰, G. Cocozza⁷⁵¹⁰, M. Colless¹⁰¹⁷, R. Collet¹⁴⁶⁰, M. Collins¹⁴⁸⁹, M. Correnti¹¹²⁹ M. Cottaar¹³⁷¹, E. Covino¹³⁴⁰, D. Crnojevic¹⁶⁴⁹, M. Cropper¹²⁴², P. Cruz Gamba¹⁰⁸⁸, M. Cunha¹²⁰⁰, F. Damiani¹¹⁴⁴, M. David¹²¹³, A. Delgado¹³⁶², E.Delgado-Mens¹²⁰⁰, R. Dorda Laforet⁷⁶⁰⁹, S. Duffau²¹¹², S. Van Eck¹²⁵⁸, B. Edvardsson⁶¹⁸¹, J. Eldridge¹³⁷⁰, H. Enke¹¹²⁵, K. Eriksson⁶¹⁸¹, N.W. Evans¹³⁷⁰, L. Ever¹³⁷⁷, B. Famaey¹³⁸², M. Fellhauer¹⁸²⁴, I. Ferreras¹³⁴², F. Figueras¹⁸²¹, G. Fiorentino¹⁴²², E. Flaccomio¹⁵⁴⁴, C. Flynn²⁰⁴⁴ D. Folha¹²⁰⁵, E. Franciosini¹³²⁵, P. Francois¹⁵⁸⁸, A. Frasca¹³⁴¹, K. Freeman¹¹²⁹, Y. Fremat¹⁶⁵⁰, E. Friel¹³⁵⁵, B. Gaensicke¹²⁴¹, P. Galindo¹⁰⁸⁸, J. Gameiro¹²⁰⁰, F. Garzon¹³⁹³, M. Gebran ⁵⁷⁴¹, S. Geier⁵⁶⁷⁷, D. Geisler¹⁸²⁴ O. Gerhard¹⁴⁹⁶, B. Gibson¹¹⁹⁷, M. Gieles¹¹⁷⁰, A. Gomboc¹⁹⁹⁵, A. Gomez¹⁵⁸⁸, C. Gonzalez-Fernandez⁷⁶⁰⁹ J.I. Gonzalez Hernandez¹³⁹⁵, E. Gosset¹³⁵⁹, E. Grebel²¹¹², R. Greimel¹⁴²³, M. Groenewegen¹⁶⁵⁰, J Groh¹⁴⁶⁴ F. Grundahl¹⁵⁶⁸, P. Gruyters⁶¹⁸¹, M. Guarcello¹³¹², B. Gustafsson⁶¹⁸¹, P. Hadrava¹¹¹⁶, T. Hansen¹⁹⁹², D. Hatzidimitriou¹⁵⁵⁹, N. Hambly¹⁶⁴⁹, P. Hammersley¹²⁵⁸, C. Hansen²¹¹², M. Haywood¹⁵⁶⁸, U. Heber⁵⁶⁷⁷, U. Heiter⁵¹⁸¹, E. Held¹³⁴³, A. Helmi¹⁴²², G. Hensler¹⁸⁹³, A. Herrero¹³⁹³, V. Hill¹⁵⁹³, S. Hodgkin¹³⁷⁰, N. Huelamo⁸¹⁴³ A. Huxor²¹¹², R. Ibata¹⁵⁸², M. Irwin¹³⁷⁰, H. Jacobson¹⁴⁸¹, R. Jackson¹¹³², P. Jofre¹⁵⁹², R. de Jong¹¹²⁵ P. Jonker¹⁶⁶⁰, S. Jordan²¹¹², C. Jordi¹⁸²¹, A. Jorissen¹³⁵⁸, N. Kacharov¹²⁴⁴, D. Katz¹⁵⁸⁸, D. Kawata¹²⁴², S.

<u>http://gaia-eso.eu</u> (public survey pag http://casu.ast.cam.ac.uk/gaiaeso/ http://great.ast.cam.ac.uk/GESwiki/GESHome http://ges.roe.ac.uk (public archive)

Outline

- Why Gaia-ESO main science drivers
- Gaia-ESO in a nutshell
- Data flow and strategy
- Calibration concept
- Survey progress
- Science (focus on MW science)
- Summary

We have Gaia!

We have Gaia!

Revolution in MW science

We have Gaia! We want more...

- Gaia has somewhat limited spectroscopic capabilities (limiting mag., precision)
- Many ambitious ground-based projects planned to complement Gaia astrometry
- Weave, 4MOST, GALAH, .., LAMOST, MOONS
- One <u>precursor</u> is the

Gaia-ESO Large Public Spectroscopic Survey

Scientific drivers

Key open issues in the formation and evolution of the MW and its component stars and stellar populations, e.g:

 linking stellar populations from birth to the old field age, mass, and environment dependences of abundances, kinematics, stellar properties
 radial, vertical and azimuthal abundance gradients and their age evolution: from the inner Galaxy to the outer parts

With Gaia-ESO and Gaia basic questions are evolving into more detailed issues

Gaia-ESO Survey in a Nutshell - general

- FLAMES: Giraffe & UVES parallel
- 300 (240+60) nights over 5 (4+1) years
- Started in 12/2011 (P88)

>10⁵ stars **All populations** of the MW: • Halo Bulge Thick & Thin discs Open Clusters + calibrators

Gaia-ESO Survey in a Nutshell - general

- FLAMES: Giraffe & UVES parallel
- 300 nights over 5 years
- Started in 12/2011 (P88)

All stellar types:

- O-type → M dwarfs
 PMS → MS → giant stars
- metal-poor → metal rich
 - + calibrators

Gaia-ESO Survey in a nutshell - Targets

MW field Giraffe: Bulge: mostly giant stars; halo /thick disc FG TO stars (17 < r < 18); giants in known streams; thin disc –only RVs for dynamics; I<19 UVES parallels: Solar neighborhood: 5000- star sample. Look at Mv~5.5 \rightarrow unbiased survey to 1kpc at V=15.

60-70 OCs in all phases of evolution (~1 Myr \rightarrow several Gyr), sampling the age-distance-R_{GC}-density-mass-[Fe/H]) parameter space.

UVES: Mostly known members (PMS, MS, evolved –

V<16.5) – from 10 to 50 stars per cluster

Giraffe: unbiased samples, photometric candidates (V < 19) – several x 100 stars/cluster

Gaia-ESO Survey in a Nutshell - products

Giraffe, 132 fibers R=16000-25000, H3...H21 **403-476**...**848-900** Parallel UVES, 6/8 fibers R=42,000, 520/580 nm 416-617/475-678

Plus ESO archive re-analysis

\rightarrow ADVANCED PRODUCTS

- RVs (+variability), vsini
- T_{eff}, log g, [Fe/H], [X/Fe] (Li, α, Fe-, s-,..)
- stellar properties: (activity, M_{acc}, M, etc.)

Gaia-ESO Survey in a Nutshell - dataflow

Gaia-ESO Survey in a Nutshell - dataflow

Gaia-ESO Survey in a Nutshell - dataflow

Calibration Concept (1/2) internal calibrations: different stellar types and settings, several nodes analyzing the same stars external calibrations: w.r.t other surveys and Gaia <u>maximize legacy value</u> and provide a rich dataset for future inter-survey calibration

- RV standards
- Gaia benchmark stars: method/node performances, internal homogeneization
- Clusters: hot vs. cool; PMS vs. MS vs. evolved; test metallicity
- CoRoT Red Giants and Kepler II targets: asteroseismic gravities and ages

Calibration Concept (2/2)

Calibration of ages One of the legacies of the cluster dataset

Calibration of ages

Gaia-ESO survey progress

- 4 years observations completed, 242 nights
 large variety of MW fields; 39 science OCs; >8000 calibators
- > 120,000 spectra collected
- 4 analysis cycles and internal releases completed (54690 individual objects); next analysis cycle to start in March
- Two phase 3 releases to ESO (reduced spectra & advanced products)
- 4th year review: Fall 2015. Positive feedback –fifth year allocated plus 47 nights compensation → Gaia-ESO will continue through mid-2017

Gaia-ESO survey progress

• 4 years observations completed, 242 nights

fifth year allocated plus 40 nights compensation

Gaia-ESO Science

Gaia-ESO Science – overview

- Bottom-up approach
- Three all-hands meetings; a few focused meetings
- ADS lists 70 papers with Gaia-ESO in the title (about 35 refereed ones) + another few submitted
- 4 A&A highlights + 3 A&A cover pages; 2 Messenger overview articles
- All original science topics addressed, plus <u>unexpected results</u>

Gaia-ESO Science – focus on:

- Constraints on stellar physics/models: some examples
- The radial metallicity distribution
- Velocity dispersions and their chemical dependences

See also the talks by: Bensby, Bragaglia, Lind, Magrini, Rojas, Romano

Constraints on stellar physics/models (1)

Li depletion in young clusters – Franciosini +(2016)

Constraints on stellar physics/models (2)

Extra-mixing during post-MS – Tautvaisiene+ (2015)

Constraints on stellar physics/models (3)

Extra-mixing during post-MS Smiljanic+(2016)

Radial metallicity distribution: open questions

Presence of gradient well established since almost 35 years now (....). But

- One slope? Step function? Flattening?
- Dispersion at a given RGC?
- Evolution with age?
- azimuth z dependence?

Randich+, in preparation

Randich+, in preparation

Next analysis cycle

Randich+, in preparation

RED: age < 0.5 Gyr

Radial anundace distribution

Radial abundace distribution

Radial abundance distribution – MW field

Bergmann, + 2014 (based on UVES data)

Galactic velocity dispersion and its chemical dependencies

Separation between thin and thick disc (beyond the solar neighborhood)

see also Recio Blanco+, 2014; Mikolaitis+, 2014; Rojas+, 2015

Galactic velocity dispersion and its chemical dependencies

Guiglion+, 2015

Fig. 6. Average radial, azimuthal and vertical velocity ($\langle V_R \rangle$, $\langle V_{\phi} \rangle$ and $\langle V_Z \rangle$) as a function of the [Mg/Fe] ratio. The [Fe/H] curves are colour coded and the average values of each one are written in the legend. The symbols, errors bars and linear fit are the same as in Fig. 5.

Summary

- Gaia-ESO is working: an operational survey from target selection, to ESO releases of calibrated results
- Excellent science, with clear potential for a substantial impact
- Includes all major spectroscopic analysis methods
 → resolves the major systematics underlying spectrum analysis
- Calibration effort ensures consistency between Gaia-ESO and Gaia, and the major spectroscopic surveys
- Calibration of stellar isochrones and stellar ages indicators from a few Myr to several Gyr