The age structure of the Milky Way's thick disk

Marie Martig, MPIA (Heidelberg)

with Ivan Minchev, Morgan Fouesneau, Melissa Ness, Hans-Walter Rix

Yoachim & Dalcanton 2008

• Morphology (Gilmore & Reid 1983, Yoachim & Dalcanton 2008, Juric et al. 2008, Comerón et al. 2011) Kinematics (Prochaska) 200 et al. 2000; Bensby et al. 2003; $[km s^{-1}]$ Reddy et al. 2003) 150 $(U_{\rm LSR}^2 + W_{\rm LSR}^2)^{1/2}$ 50 0 -150-100-500 [km s⁻¹] $V_{\rm LSR}$

Bensby et al 2005

- Morphology (Gilmore & Reid 1983, Yoachim & Dalcanton 2008, Juric et al. 2008, Comerón et al. 2011)
- Kinematics (Prochaska et al. 2000; Bensby et al. 2003; Reddy et al. 2003)

- Morphology (Gilmore & Reid 1983, Yoachim & Dalcanton 2008, Juric et al. 2008, Comerón et al. 2011)
- Kinematics (Prochaska et al. 2000; Bensby et al. 2003; Reddy et al. 2003)
- Chemistry (Fuhrmann 1998; Navarro et al. 2011; Adibekyan et al. 2012)
- Age (Bensby et al. 2014; Kubryk et al. 2015)

- Morphology Milky Way and nearby galaxies
- Kinematics Milky Way only
- Chemistry Milky Way only
- Age Milky Way only

 \rightarrow different definitions make it difficult to compare the MW to nearby galaxies

 In the MW, alpha-rich stars mostly in inner disk, with short scale-length (Bensby et al. 2011; Cheng et al. 2012; Bovy et al. 2012; Nidever et al. 2014; Hayden et al. 2015)

Hayden et al 2015

JNDANCE-RESOLVED The radial extent of thick disks

In the MW, alpha-rich stars mostly in inner disk, with short scale-length (Bensby et al. 2011; Cheng et al. 2012; Bovy et al. 2012; Nidever et al. 2014; Hayden et al. 2015)

- In the MW, alpha-rich stars mostly in inner disk, with short scale-length (Bensby et al. 2011; Cheng et al. 2012; Bovy et al. 2012; Nidever et al. 2014; Hayden et al. 2015)
- In nearby galaxies, thick disks are extended

- In the MW, alpha-rich stars mostly in inner disk, with short scale-length (Bensby et al. 2011; Cheng et al. 2012; Bovy et al. 2012; Nidever et al. 2014; Hayden et al. 2015)
- In nearby galaxies, thick disks are extended

- In the MW, alpha-rich stars mostly in inner disk, with short scale-length (Bensby et al. 2011; Cheng et al. 2012; Bovy et al. 2012; Nidever et al. 2014; Hayden et al. 2015)
- In nearby galaxies, thick disks are extended

- In the MW, alpha-rich stars mostly in inner disk, with short scale-length (Bensby et al. 2011; Cheng et al. 2012; Bovy et al. 2012; Nidever et al. 2014; Hayden et al. 2015)
- In nearby galaxies, thick disks are extended
- → is the MW actually different, or is it just a matter of definition?

Zoom cosmological simulations 150 pc resolution, 15,000 Msun gas particles

Quiescent history in last 9 Gyr of evolution

1:10, 1:4 and 1:15 mergers

→ select disk stars in 500 Myr age bins

Martig, Minchev & Flynn 2014a, b

Anticorrelation between scaleheight and scale-length

Anticorrelation between scaleheight and scale-length 10.5 Ŧ 9.0 7.5 Ĵyr] **MULTIN** 0 g22 g48 g102 4 z⁰ [kbc] 2 z⁰ [kbc] 2 3 2⁰ [kbc] 2 z⁰ [kbc] / 3 / 3 / 3 / 4 / 3 / 4 / 3 / 4 1 1 0^ь 0_ò 6 R₀ [kpc] 10 12 4 5 R₀ [kpc] 10 12 16 2 2 3 14 8 Λ R₀ [kpc]

Mono-age populations are flared

Mono-age populations are flared

Mono-age populations are flared

But the global thick disk does not 0.0 flare

- a two-component decomposition is always possible
- Thick component extends to outer regions

Minchev, Martig et al 2015

The thick disk is made of all the "flared parts" of the mono-age populations

Minchev, Martig et al 2015

The thick disk is made of all the "flared parts" of the mono-age populations

Could we directly test this in the Milky Way?

A new method to determine stellar masses

A new method to determine stellar masses

Structure of star at MS turnoff

Structure of star at MS turnoff

After the first dredge-up, the surface abundances change:

- Nitrogen increases
- Carbon decreases
- \rightarrow [C/N] decreases

Surface [C/N] after the first dredge-up depends on stellar mass

depth reached by convective envelope

Higher mass star:

- larger zone where ¹²C burned into ¹⁴N
- convective envelope goes deeper during dredge-up

[C/N] and stellar mass are correlated

A model for mass as a function of spectroscopic labels

Training set: 1475 giants in APOKASC (APOGEE+Kepler)

Mass and age are correlated

We also build a model for age

Mass/age labels transferred to APOGEE DR12 stars

Martig et al 2016

Ages for red clump stars

Martig et al 2016

Simulations predicted radial age gradients

Minchev, Martig et al 2015

Radial age gradients for APOGEE RC stars

Martig et al in prep

Radial age gradients for APOGEE red clump stars

Summary

- Thick disks: short scale-length in MW / extended in external galaxies
- "Morphologically-defined" thick disk are NOT a distinct, uniformly old components
- Age gradient present in APOGEE data