The age structure of the Milky Way's thick disk

Marie Martig, MPIA (Heidelberg)
with Ivan Minchev, Morgan Fouesneau, Melissa Ness, Hans-Walter Rix

Thick disk definition based on...

- Morphology
(e.g., Gilmore \& Reid 1983

Comerón et al. 2011)

Yoachim \& Dalcanton 2008

Thick disk definition based on...

- Morphology (Gilmore \& Reid 1983, Yoachim \& Dalcanton 2008, Juric et al. 2008, Comerón et al. 2011)
- Kinematics (Prochaska et al. 2000; Bensby et al. 2003; Reddy et al. 2003)

Bensby et al 2005

Thick disk definition based on...

- Morphology (Gilmore \& Reid 1983, Yoachim \& Dalcanton 2008, Juric et al. 2008, Comerón et al. 2011)
- Kinematics (Prochaska et al. 2000; Bensby et al. 2003; Reddy et al. 2003)
- Chemistry
(Fuhrmann 1998
Navarro et al. 2011 Adibekyan et al. 2012)

Thick disk definition based on...

- Morphology (Gilmore \& Reid 1983, Yoachim \& Dalcanton 2008, Juric et al. 2008, Comerón et al. 2011)
- Kinematics (Prochaska et al. 2000; Bensby et al. 2003; Reddy et al. 2003)
- Chemistry (Fuhrmann 1998; Navarro et al. 2011; Adibekyan et al. 2012)
- Age (Bensby et al. 2014; Kubryk et al. 2015)

Thick disk definition based on...

- Morphology Milky Way and nearby galaxies
- Kinematics Milky Way only
- Chemistry Milky Way only
- Age Milky Way only
\rightarrow different definitions make it difficult to compare the MW to nearby galaxies

The radial extent of thick disks

- In the MW, alpha-rich stars mostly in inner disk, with short scale-length (Bensby et al 2011; Cheng et al. 2012; Bovy et al. 2012; Nidever et al. 2014; Hayden et al. 2015)

Hayden et al 2015

The radial extent of thick disks

- In the MW, alpha-rich stars mostly in inner disk, with short scale-length (Bensby et al. 2011; Cheng et al. 2012; Bovy et al. 2012; Nidever et al. 2014; Hayden et al. 2015)

Bovy et al 2012

The radial extent of thick disks

- In the MW, alpha-rich stars mostly in inner disk, with short scale-length (Bensby et al. 2011; Cheng et al. 2012; Bovy et al. 2012; Nidever et al. 2014; Hayden et al. 2015)
- In nearby galaxies, thick disks are extended

The radial extent of thick disks

- In the MW, alpha-rich stars mostly in inner disk, with short scale-length (Bensby et al 2011; Cheng et al. 2012; Bovy et al. 2012; Nidever et al. 2014; Hayden et al. 2015)
- In nearby galaxies, thick disks are extended

The radial extent of thick disks

- In the MW, alpha-rich stars mostly in inner disk, with short scale-length (Bensby et al. 2011; Cheng et al. 2012; Bovy et al. 2012; Nidever et al. 2014; Hayden et al. 2015)
- In nearby galaxies, thick disks are extended

The radial extent of thick disks

- In the MW, alpha-rich stars mostly in inner disk, with short scale-length (Bensby et al 2011; Cheng et al. 2012; Bovy etal. 2012; Nidever etal. 2014; Hayden et al. 2015)
- In nearby galaxies, thick disks are extended
\rightarrow is the MW actually different, or is it just a matter of definition?

Zoom cosmological simulations

 150 pc resolution, 15,000 Msun gas particles

Quiescent history in last 9 Gyr of evolution

1:10, 1:4 and 1:15 mergers
\rightarrow select disk stars in 500 Myr age bins

Anticorrelation between scaleheight and scale-length

Anticorrelation between scale-

 height and scale-length

Mono-age populations are flared

Quiescent galaxies

Mono-age populations are flared

Quiescent galaxies

Galaxies with mergers

Mono-age populations are flared

But the global thick disk does not flare

- a two-component decomposition is always possible
- Thick component extends to outer regions

Minchev, Martig et al 2015

The thick disk is made of all the "flared parts" of the mono-age populations

Minchev, Martig et al 2015

The thick disk is made of all the "flared parts" of the mono-age populations

Could we directly test this in the Milky Way?

A new method to determine stellar masses

A new method to determine stellar masses

Structure of star at MS turnoff

Structure of star at MS turnoff

depth reached by convective envelope

After the first dredge-up, the surface abundances change:

- Nitrogen increases
- Carbon decreases
$\rightarrow[\mathrm{C} / \mathrm{N}]$ decreases

Surface [C/N] after the first dredge-up depends on stellar mass

depth reached by
convective envelope

Higher mass star:

- larger zone where ${ }^{12} \mathrm{C}$ burned into ${ }^{14} \mathrm{~N}$
- convective envelope goes deeper during dredge-up

[C/N] and stellar mass are correlated

Martig et al 2016

A model for mass as a function of spectroscopic labels

Training set: 1475 giants in APOKASC (APOGEE+Kepler)

Mass and age are correlated

We also build a model for age

Mass/age labels transferred to APOGEE DR12 stars

Ages for red clump stars

Simulations predicted radial age gradients

Minchev, Martig et al 2015

Radial age gradients for APOGEE RC stars

Radial age gradients for APOGEE red clump stars

Summary

- Thick disks: short scale-length in MW / extended in external galaxies
- "Morphologically-defined" thick disk are NOT a distinct, uniformly old components
- Age gradient present in APOGEE data

