Measuring the vertical age structure of the Galactic disc using asteroseismology

Victor Silva Aguirre, Aldo Serenelli, Dennis Stello, Ralph Schönrich, Sofia Feltzing, Antonino Milone, Simon Hodgkin

Fossis

chemical composition: ISM at the time and place of their formation orbits: encode residual information on dynamical history

http://www.rssd.esa.int/SA-general/Projects/Hipparcos/images/f3_5_005.pdf

http://www.rssd.esa.int/SA-general/Projects/Hipparcos/images/f3_5_005.pdf

Astrometry

e.g. Soderblom (2010, ARAA)

http://www.rssd.esa.int/SA-general/Projects/Hipparcos/images/f3_5_005.pdf

http://www.rssd.esa.int/SA-general/Projects/Hipparcos/images/f3_5_005.pdf

$$\frac{M}{M_{\odot}} \simeq \left(\frac{\nu_{\max}}{\nu_{\max,\odot}}\right)^3 \left(\frac{\Delta\nu}{\Delta\nu_{\odot}}\right)^{-4} \left(\frac{T_{\text{eff}}}{T_{\text{eff},\odot}}\right)^{3/2}$$
$$\frac{R}{R_{\odot}} \simeq \left(\frac{\nu_{\max}}{\nu_{\max,\odot}}\right) \left(\frac{\Delta\nu}{\Delta\nu_{\odot}}\right)^{-2} \left(\frac{T_{\text{eff}}}{T_{\text{eff},\odot}}\right)^{1/2},$$

$$\frac{M}{M_{\odot}} \simeq \left(\frac{\nu_{\max}}{\nu_{\max,\odot}}\right)^3 \left(\frac{\Delta\nu}{\Delta\nu_{\odot}}\right)^{-4} \left(\frac{T_{\text{eff}}}{T_{\text{eff},\odot}}\right)^{3/2}$$
$$\frac{R}{R_{\odot}} \simeq \left(\frac{\nu_{\max}}{\nu_{\max,\odot}}\right) \left(\frac{\Delta\nu}{\Delta\nu_{\odot}}\right)^{-2} \left(\frac{T_{\text{eff}}}{T_{\text{eff},\odot}}\right)^{1/2}.$$

$$\frac{M}{M_{\odot}} \simeq \left(\frac{\nu_{\max}}{\nu_{\max,\odot}}\right)^3 \left(\frac{\Delta\nu}{\Delta\nu_{\odot}}\right)^{-4} \left(\frac{T_{\text{eff}}}{T_{\text{eff},\odot}}\right)^{3/2}$$
$$\frac{R}{R_{\odot}} \simeq \left(\frac{\nu_{\max}}{\nu_{\max,\odot}}\right) \left(\frac{\Delta\nu}{\Delta\nu_{\odot}}\right)^{-2} \left(\frac{T_{\text{eff}}}{T_{\text{eff},\odot}}\right)^{1/2}$$

$$\frac{M}{M_{\odot}} \simeq \left(\frac{\nu_{\max}}{\nu_{\max,\odot}}\right)^3 \left(\frac{\Delta\nu}{\Delta\nu_{\odot}}\right)^{-4} \left(\frac{T_{\text{eff}}}{T_{\text{eff},\odot}}\right)^{3/2}$$
$$\frac{R}{R_{\odot}} \simeq \left(\frac{\nu_{\max}}{\nu_{\max,\odot}}\right) \left(\frac{\Delta\nu}{\Delta\nu_{\odot}}\right)^{-2} \left(\frac{T_{\text{eff}}}{T_{\text{eff},\odot}}\right)^{1/2}$$

$$\frac{M}{M_{\odot}} \simeq \left(\frac{\nu_{\max}}{\nu_{\max,\odot}}\right)^3 \left(\frac{\Delta\nu}{\Delta\nu_{\odot}}\right)^{-4} \left(\frac{T_{\text{eff}}}{T_{\text{eff},\odot}}\right)^{3/2}$$
$$\frac{R}{R_{\odot}} \simeq \left(\frac{\nu_{\max}}{\nu_{\max,\odot}}\right) \left(\frac{\Delta\nu}{\Delta\nu_{\odot}}\right)^{-2} \left(\frac{T_{\text{eff}}}{T_{\text{eff},\odot}}\right)^{1/2},$$

ages $\left(\frac{M}{M_{\odot}}\right) \simeq \left(\frac{\nu_{\max}}{\nu_{\max,\odot}}\right)^{3} \left(\frac{\Delta\nu}{\Delta\nu_{\odot}}\right)^{-4} \left(\frac{T_{\text{eff}}}{T_{\text{eff},\odot}}\right)^{3/2}$ $\frac{R}{R_{\odot}} \simeq \left(\frac{\nu_{\max}}{\nu_{\max,\odot}}\right) \left(\frac{\Delta\nu}{\Delta\nu_{\odot}}\right)^{-2} \left(\frac{T_{\text{eff}}}{T_{\text{eff},\odot}}\right)^{1/2}$

Leaving the Neighbourhood

cf. e.g. Pont & Eyer (2004), Jørgensen & Lindegren (2005), Burnett & Binney (2010), Serenelli et al. (2013)

Sweeping (many things) under the rug

ensemble: probabilistic ages are OK 📅 star-by-star: deterministic ages with care

cf. e.g. Pont & Eyer (2004), Jørgensen & Lindegren (2005), Burnett & Binney (2010), Serenelli et al. (2013)

Hipparcos vs Kepler

Fractional uncertainty

Fractional uncertainty

Metallicity Distribution Function

Metallicity Distribution Function

Age-Metallicity Distribution Function

only good ages are used: σ < 1 Gyr or relative uncertainty < 25%

Age-Metallicity Relation

YES/Maybe/NO: e.g, Twarog+ 1980, Edvardsson+ 1993, Rocha-Pinto+2000, Feltzing & Holmberg 2001, Nordstrom+ 2004, Haywood+ 2008, Bergemann+ 2014

Ages and Gradients in the GCS

Ages and Gradients in the GCS

Age Dispersion relation

e.g. von Hoerner 1960, Mayor 1974

Strömgren survey for Asteroseismology and Galactic Archaeology

www.mso.anu.edu.au/saga

WFC @ INT: •2.5 m •34' x 34' FOV •Strömgren uvby •28 nights (2012-2014) •37 nights (2015)

Casagrande, Silva Aguirre, Stello, Huber et al. (2014)

Strömgren survey for Asteroseismology and Galactic Archaeology

www.mso.anu.edu.au/saga

WFC @ INT: •2.5 m •34' x 34' FOV •Strömgren uvby •28 nights (2012-2014) •37 nights (2015)

989 seismic stars 29000 stars

Casagrande, Silva Aguirre, Stello, Huber et al. (2014)

In situ

mass-loss

e.g. Miglio et al. 2012; Origlia et al. 2007, 2014; Heyl et al. 2015

total error budget

WYSIWYG?

(the magic of asteroseismology?)

how well the red giants observed by Kepler are representative of the underlying population of giants in the field (benchmarking against an unbiased sample).

✓ Target selection effects:

once the selection function is known, how this bias the observations (population synthesis).

all stars

V < 14

V < 14

Target selection effects

Target selection effects

Target selection effects

Casagrande et al. (2016)

Age distribution

Age distribution

Age distribution

Photometry: powerful tool gauge into selection function(s)

Galactic studies: we can now obtain constraints similar to those available for the solar neighbourhood

- age-metallicity
- vertical age gradient
- age distribution

Mass loss: crucial to derive better ages for red giants

Photometry: powerful tool gauge into selection function(s)

Galactic studies: we can now obtain constraints similar to those available for the solar neighbourhood

- age-metallicity
- vertical age gradient
- age distribution

Mass loss: crucial to derive better ages for red giants