

In collaboration with

FLAMES GC survey:

Eugenio Carretta, Raffaele Gratton, Sara Lucatello, Valentina D’Orazi, Antonio Sollima, Chris Sneden et (many) al.

Gaia-ESO Survey:
400+ co-Is (PIs : G. Gilmore, S. Randich)

GC systems \& galaxies

\checkmark GC systems are ubiquitous
\checkmark number/frequency of GC varies with morph. type
\checkmark mass $\sim 10^{5}-10^{6} \mathrm{M} \odot$
$\checkmark \mathrm{Mv} \sim-5$ to -10
\checkmark r_c $\sim 1 \mathrm{pc}$
\checkmark metallicity ~-2.5 to 0
\checkmark old (age $\geq 10 \mathrm{Gyr}$)
MW : nr ~ 160
$\mathrm{S}_{\mathrm{N}} \sim 0.5$
halo, disk, bulge

GCs in the MW

- About 160 GCs in MW (about 2/3 in halo)

GCs in the MW

- About 160 GCs in MW (about 2/3 in halo)
- More to be found ? Yes : far/extincted/small/extended

GCs in the MW

vital diagram for MW GCs

(Gnedin \& Ostriker 1997)

GCs lose mass/stars

- violent relaxation (init.)
- two-body encounters
- tidal shocks

Present-day GCs:

- less than in origin
- less massive than in origin

GCs in the MW

vital diagram for MW GCs (Gnedin \&o Ostriker 1997)

GCs do lose mass/stars

- violent relaxation (init.)
- two-body encounters
- tidal shocks

Jordi \& Grebel 2010 :
t 17 GCs, SDSS,
search for extra-tidal features

Tidal tails \& streams

Tails with clusters :
NGC 288 : Grillmair+ 2013
NGC 5466 : Belokurov+ 2006
NGC 5053 : Lunchner +2006
Pal 14 : Sollima+2011
Pal 1 : Nieder-Ostholt+ 2010
See also Jordi \& Grebel 2010
Open identification :
Pyxis (ATLAS, Koposov+ 2014)
"Orphan" tails : $10+$ (e.g. GD-1)

Pal 5 - SDSS (Odenkirchen+2001)

Grillmair (IAUS 317) : 21 nearby halo streams and more expected... imply original population of about 450 GCs

Chemistry: GC \approx halo field stars ?

- field halo stars

GCs
(Gratton+2012, Iveric+2007)

(Adibekyan+2012, Chen 2000, Gratton +2003 , Jonsell +2005 , Pompeia +2008 , Carretta +2010 , Kirby +2011)

HB : GC \neq halo field stars

3 GCs (Snapshot HST survey, Piotto+2002) \& field BHB (Brown+2008)

$\mathrm{C} \& \mathrm{~N}: \mathrm{GCs} \neq$ field

47Tuc: Norris+ 1984
C, N anticorrelation spread / bimodality

Pancino+ 2010

$\mathrm{O} \& \mathrm{Na}: \mathrm{GCs} \neq$ field

Our FLAMES GC survey

- 25+ massive GCs : Mv=-5.5 to -10
- FLAMES@VLT (UVES R=45000, 8x + GIRAFFE R=20000, 100x)

Piotto +2002 , HST snapshot

NGC2808

NGC6388

$\mathrm{Na} \& \mathrm{O}$ in GCs : FLAMES survey

Our personal

 survey of 25+ GGCs with FLAMESCarretta+
Gratton+ Bragaglia+ 2006-2015

also $\mathbf{M g} \& \mathrm{Al} . .$.

only UVES

Carretta $+2009 b$

also $\mathrm{Mg} \& \mathrm{Al} . .$.

$\mathrm{Na} \& \mathrm{O}$: do all GCs have anticorrelation ?

Pal 5 (Smith et al. 2002)

$$
\begin{aligned}
& \mathrm{Mv}=-5.17 \\
& \text { mass } \sim 1.5 \times 10^{4} \mathrm{M} \odot
\end{aligned}
$$

ω Cen Jobnson * Pilachowski 2010, Marino et al. 2011)

$$
\begin{aligned}
& \mathrm{Mv}=-10.29 \\
& \text { mass } \sim 2.3 \times 10^{6} \mathrm{M} \odot
\end{aligned}
$$

$\mathrm{Na}-\mathrm{O}$ anticorrelation $=\mathrm{GC}$?

Always?

A Na-O anticorrelation $A \square$ no data
\diamond Ter 7, Pal 12 : no?
\diamond Rup 106 : no

Be39, NGC 6791 : no
Tautavaisiene+2004,
Sbordone+2007
Cohen 2004
Villanova+2012
Bragaglia +2012
Bragaglia+2014

$\mathrm{Na} \& \mathrm{O}$ in $\mathrm{GCs} \neq$ field

FG \& SG in GCs

Present-day mass << original mass?

- if SG formed by ejecta of FG
- only part of original stellar mass in ejecta
- GCs much more massive to have now 2/3 SG stars
- and/or very different IMF in FG
- they've lost most of their mass/stars ($>\mathbf{9 0 \%}$)
- mostly of FG
\rightarrow halo MAY contain 6-20 \% of GC stars

GC stars contribution to halo (Carretta IAUS 317)

Theo/oss	fraction of SG in halo	and	originally in GCs	if	ref
Hydrodynam. simulations	$\begin{aligned} & <4-6 \% \\ & <7-9 \% \end{aligned}$	$\begin{aligned} & \text { K93 IMF } \\ & \text { K01 IMF } \end{aligned}$	$\begin{aligned} & 20-40 \% \\ & 30-60 \% \end{aligned}$	K01 IMF K93 IMF	Vesperini+2010
FRMS model	2.5\%	FG/SG=0.5	$\begin{aligned} & 5-8 \% \\ & 10-20 \% \end{aligned}$	SG escaped=0 2.5\% SG from GC	Schaerer \& Charbonnel 2011
Na max	$\begin{aligned} & \text { 1.4\% } \\ & \text { 2.8\% } \end{aligned}$	FG/SG=0.5	$\begin{aligned} & \sim 25 \% \\ & \sim 13 \% \end{aligned}$	Juric+2008 norm. Morrison 1993 norm.	Carretta+2010
CN-strong	2.85\%	FG/SG=0.5	$\begin{aligned} & \sim 17.5 \% \\ & \sim 50 \% \end{aligned}$	Low mass stars Full mass spectrum	Martell+2011
O-poor/Narich st.	$\begin{aligned} & 3 \pm 2 \% \\ & 1.5 \pm 1.5 \% \end{aligned}$	If G53-41 binary			Ramirez+2012
Na, CN excesses	2.5\%	FG/SG=0.5	5\%	1.2\% halo mass still in GCs	Gratton+2012
Na, CN excesses	2.5\%	FG/SG=0.5	50\%	Initial GC 10x larger	Gratton+2012

$\mathrm{C} \& \mathrm{~N}$ in the field: SG-like stars ?

focused discovery

SEGUE 1

49 CN-strong over 1957

SEGUE 2
16 CN-strong over 561

Martell \& Grebel 2010 Martell+ 2011

FLAMES GC Survey: SG-like stars?

serendipitous discovery

- $[\mathrm{Na} / \mathrm{Fe}] \mathrm{min}$ in GCs
- [$\mathrm{Na} / \mathrm{Fe}]$ max

2 stars over 144
= 1.4% "SG"
$\rightarrow 2.8 \%(\mathrm{FG}+\mathrm{SG})$
Carretta 2010

Two SG-like stars lost ?

serendipitous discovery

High Na, low O
(also [$\alpha / \mathrm{Fe}] \sim 0.2$; one of the two has
high Ba)
2 stars over 67

" $3 \pm 2 \%$ of local field metal-poor star population was born in GCs"

Ramirez+ 2012

Many SG-like stars lost ?

Carretta (2013): 1891 field stars $(-2.3 \leq[\mathrm{Fe} / \mathrm{H}] \leq-0.8)$ with Na , Fe shifted to the same abundance system (Gratton et al. 2003 and FLAMES survey of GCs)

Candidate SG-like : 4.7\% (before binarity check)

... use with streams \& moving groups

Wylie-de-Boert 2012:
Aquarius stream origin : GC (15 members, from RAVE), 6with high-res spectra \boldsymbol{K})

... use with streams \& moving groups

The era of large surveys

The era of large surveys

See also :

- RAVE
- APOGEE
- GALAH
- LAMOST
\& future :
- WEAVE
- 4MOST

Gaia-ESO Survey in a nutshell

- PI Randich/Gilmore

For information : http://www.gaia-eso.eu

- 450+ researchers
- 300 VLT nights / 5 years
- FLAMES
- 10^{5} MW stars
- 70+ open clusters
- STD / GCs
- distributed analysis

Gaia-ESO GCs : O \& Na

[$\mathrm{Fe} / \mathrm{H}]<-1$
$[\mathrm{Fe} / \mathrm{H}] \sim-1.2$
[$\mathrm{Fe} / \mathrm{H}] \sim-1.5$
$[\mathrm{Fe} / \mathrm{H}]<-2$
only UVES

New/scarcely studied

Gaia-ESO GCs: Mg \& Al

[$\mathrm{Fe} / \mathrm{H}]<-1$
$[\mathrm{Fe} / \mathrm{H}] \sim-1.2$
[Fe/H]~-1.5
$[\mathrm{Fe} / \mathrm{H}]<-2$

New/scarcely studied

Gaia-ESO Survey data

Lind + 2015: one GC escapee

22593757-4648029 (1 in 7300 FGK stars)
Teff/logg/[Fe/H]=5260/2.84/-1.49
$[\mathrm{Mg} / \mathrm{Fe}]=-0.36$
$[\mathrm{Al} / \mathrm{Fe}]=+0.99$

Gaia-ESO Survey data

Lind +2015 : one GC escapee

- Ca,Si,Ti normal for halo (no dSph-like)

- Y normal (no s-enhancement from binary)
- parent GC (if not disrupted) ?

N2808 too m-rich, N 2419 too m-poor ω Cen?

- metallicity alone not enough
- orbits star \& GCs
- if ejected at high velocity
ω Cen, M22, N362
need follow up for chemical tagging

Gaia-ESO Survey data

O Field stars
$-2.5<[\mathrm{Fe} / \mathrm{H}]<-0.5$
candidates

- 11 GCs
H Lind+15

Gaia-ESO Survey data

Gaia-ESO Survey data

SG-like field halo star (born in a GC) ?

here is a checklist :

- metallicity -2.5 to -0.5 ?
- low [$\mathrm{Mg} / \mathrm{Fe}$] coupled with high [Al/Fe]
- low [O/Fe] coupled with high [$\mathrm{Na} / \mathrm{Fe}$]
(giants/dwarfs : [O I])
- binary ??
follow-up RV
?? no high s-process
- orbit ? ?
to be done (GES RV, Gaia 5-parameters catalogue 2017)

APOGEE data : SG-like stars?

APOGEE DR12 (allStar-v603) \& Meszaros+2015 (for GCs)

WEAVE

WEAVE

WEAVE

Sin

blue arm:
404-465nm
or
473-545 nm
plus
red arm:
595-685nm

LR: 5000
HR: 20000

Summary

$>$ GCs did contribute (and are presently contributing) stars to the MW halo
(formation \& destruction mechanisms)
$>$ We can recover stars lost by GCs via chemical tagging (FG vs SG chemistry)
$>$ About $3-5 \%$ is the minimum (observed) contribution (CN excess, high Na-low O, high Al-low Mg)
$>$ Mass budget problem: up to 50% of halo comes from GCs??? (GCs $\sim 10 \mathrm{x}$ more more massive)
(as usual) : more data, improved modeling required

