THE CONTRIBUTION OF GLOBULAR CLUSTERS TO THE GALACTIC HALO

Angela Bragaglia INAF-Osservatorio Astronomico Bologna

ISTITUTO NAZIONALE DI ASTROFISICA OSSERVATORIO ASTRONOMICO DI BOLOGNA In collaboration with

FLAMES GC survey: Eugenio Carretta, Raffaele Gratton, Sara Lucatello, Valentina D'Orazi, Antonio Sollima, Chris Sneden et (many) al.

Gaia-ESO Survey:

400+ co-Is (PIs : G. Gilmore, S. Randich)

GC systems & galaxies

✓ GC systems are ubiquitous ✓ number/frequency of GC varies with morph. type ✓ mass ~10⁵-10⁶ M⊙ \checkmark Mv~-5 to -10 ✓ r_c~1 pc \checkmark metallicity ~ -2.5 to 0 \checkmark old (age \ge 10 Gyr) **MW** : $nr \sim 160$ $S_N \sim 0.5$ halo, disk, bulge

• About 160 GCs in MW (about 2/3 in halo)

- About 160 GCs in MW (about 2/3 in halo)
- More to be found ? Yes : far/extincted/small/extended

vital diagram for MW GCs (Gnedin & Ostriker 1997)

GCs lose mass/stars

- violent relaxation (init.)
- two-body encounters
- tidal shocks

Present-day GCs:

- less than in origin
- less massive than in origin

vital diagram for MW GCs (Gnedin & Ostriker 1997)

GCs do lose mass/stars

- violent relaxation (init.)
- two-body encounters
- tidal shocks

Jordi & Grebel 2010 : ★ 17 GCs, SDSS, search for extra-tidal features

Tidal tails & streams

Tails with clusters :

NGC 288 : Grillmair+ 2013 NGC 5466 : Belokurov+ 2006 NGC 5053 : Lunchner+ 2006 Pal 14 : Sollima+2011 Pal 1 : Nieder-Ostholt+ 2010 See also Jordi & Grebel 2010 Open identification : Pyxis (ATLAS, Koposov+ 2014) "Orphan" tails : 10+ (e.g. GD-1)

Pal 5 – SDSS (Odenkirchen+2001)

Grillmair (IAUS 317) : 21 nearby halo streams and more expected... imply original population of about 450 GCs

Chemistry: $GC \approx$ halo field stars?

Metallicity Outer Halo 1 N/Ntot 9.0 -1.5 -2 -0.5 -2.5 -1 Metallicity Inner Halo N/Ntot 0.5 -1.5 -2 -0.5 -2.5 -1 0 Metallicity

field halo stars
 GCs
 (Gratton+2012, Ivezic+2007)

HB: $GC \neq$ halo field stars

3 GCs (Snapshot HST survey, Piotto+2002) & field BHB (Brown+2008)

Pancino+ 2010

O & Na : GCs \neq field

Gratton et al. 2003

Carretta et al. 2009a,b

Our FLAMES GC survey

- 25+ massive GCs : Mv=-5.5 to -10
- FLAMES@VLT (UVES R=45000, 8x + GIRAFFE R=20000, 100x)

Na & O in GCs : FLAMES survey

survey of 25+ **GGCs** with **FLAMES** *Carretta*+

Gratton+ Bragaglia+ 2006-2015

Carretta+2009b

Na & O: do all GCs have anticorrelation?

ω Cen (Johnson & Pilachowski 2010, Marino et al. 2011)

Mv= -10.29 mass ~ 2.3 x 10⁶ M⊙

Na-O anticorrelation = GC ?

Bragaglia+2012 Bragaglia+2014

Na & O in GCs \neq field

Gratton et al. 2003

Carretta et al. 2009a,b

FG & SG in GCs

FG ~ 1/3 **SG** ~ 2/3

Bastian & Lardo 2015

Present-day mass << original mass?

- if SG formed by ejecta of FG
- only part of original stellar mass in ejecta
- GCs much more massive to have now 2/3 SG stars
- and/or very different IMF in FG
- they've lost most of their mass/stars (>90%)
- mostly of FG
 - halo MAY contain 6-20 % of GC stars

only the SG stars are "easy" to find ...

GC stars contribution to halo (Carretta IAUS 317)

Theo/oss	fraction of SG in halo	and	originally in GCs	if	ref
Hydrodynam. simulations	<4-6% < 7-9%	K93 IMF K01 IMF	20-40% 30-60%	K01 IMF K93 IMF	Vesperini+2010
FRMS model	2.5%	FG/SG=0.5	5-8% 10-20%	SG escaped=0 2.5% SG from GC	Schaerer & Charbonnel 2011
Na max	1.4% 2.8%	FG/SG=0.5	~25% ~13%	Juric+2008 norm. Morrison 1993 norm.	Carretta+2010
CN-strong	2.85%	FG/SG=0.5	~17.5% ~50%	Low mass stars Full mass spectrum	Martell+2011
O-poor/Na- rich st.	3±2% 1.5±1.5%	lf G53-41 binary			Ramirez+2012
Na,CN excesses	2.5%	FG/SG=0.5	5%	1.2% halo mass still in GCs	Gratton+2012
Na,CN excesses	2.5%	FG/SG=0.5	50%	Initial GC 10x larger	Gratton+2012

C & N in the field : SG-like stars ?

FLAMES GC Survey: SG-like stars ?

Two SG-like stars lost?

"3 ± 2 % of local field metal-poor star population was born in GCs"

Ramirez+ 2012

Many SG-like stars lost?

Carretta (2013) : 1891 field stars (-2.3 \leq [Fe/H] \leq -0.8) with Na, Fe shifted to the same abundance system (Gratton et al. 2003 and FLAMES survey of GCs)

Candidate SG-like : 4.7% (before binarity check)

... use with streams & moving groups

... use with streams & moving groups

The era of large surveys

The era of large surveys

See also :

- RAVE
- APOGEE
- GALAH
- LAMOST
- & future :
- WEAVE
- 4MOST

Gaia-ESO Survey in a nutshell

- PI Randich/Gilmore
- 450+ researchers
- 300 VLT nights/5 years
- FLAMES
- 10⁵ MW stars
- 70+ open clusters
- STD / GCs
- distributed analysis

For information : http://www.gaia-eso.eu

Gaia-ESO GCs : O & Na

[Fe/H]<-1 [Fe/H]~-1.2 [Fe/H]~-1.5 [Fe/H]<-2

only UVES

New/scarcely studied

Gaia-ESO GCs: Mg & Al

[Fe/H]<-1 [Fe/H]~-1.2 [Fe/H]~-1.5 [Fe/H]<-2

New/scarcely studied

Lind + 2015 : one GC escapee

22593757-4648029 (1 in 7300 FGK stars) Teff/logg/[Fe/H]=5260/2.84/-1.49 [Mg/Fe]=-0.36 [Al/Fe] =+0.99

Lind + 2015 : one GC escapee

- Ca,Si,Ti normal for halo (no dSph-like)
- Y normal (no s-enhancement from binary)
- parent GC (if not disrupted) ?
 N2808 too m-rich, N2419 too m-poor ω Cen?
- metallicity alone not enough
- orbits star & GCs
- if ejected at high velocity
 ω Cen, M22, N362

need follow up for chemical tagging

SG-like field halo star (born in a GC) ? here is a checklist :

- metallicity -2.5 to -0.5?
- low [Mg/Fe] coupled with high [Al/Fe] </
- low [O/Fe] coupled with high [Na/Fe] (giants/dwarfs : [O I])
- binary ??
 - follow-up RV ??
 - no high s-process 🗸
- orbit ??

to be done (GES RV, Gaia 5-parameters catalogue 2017)

APOGEE data : SG-like stars?

WEAVE

WEAVE

Summary

GCs did contribute (and are presently contributing) stars to the MW halo

(formation & destruction mechanisms)

- We can recover stars lost by GCs via chemical tagging (FG vs SG chemistry)
- > About 3-5% is the minimum (observed) contribution (CN excess, high Na-low O, high Al-low Mg)
- Mass budget problem: up to 50% of halo comes from GCs??? (GCs ~10x more more massive)

(as usual) : more data, improved modeling required