Gas Outflow Properties in Cosmological Simulations of Galaxies

P. Barai, INAF-OATs

Paramita Barai (INAF - Astronomical Observatory of Trieste)

Collaborators:

Pierluigi Monaco, Giuseppe Murante, Antonio Ragagnin, Matteo Viel 30-Jun-15 MATIONAL INSTITUTE

Simulations Workshop, Sesto, 30 June 2015

Modified-GADGET3 code: Sub-Resolution Physics

- GADGET3 : TreePM (gravity) SPH (hydro)
 - Springel 2005, MNRAS, 364, 1105
- Metal-line cooling & radiative heating (Wiersma et al. 2009, MNRAS, 399, 574) in the presence of UV photoionizing background (Haardt & Madau 2001)
- Star Formation
 - MUPPI model (Murante et al. 2010)

- Stellar & Chemical Evolution (Tornatore et al. 2007, MNRAS, 382, 1050)
 - Metal (C, Ca, O, N, Ne, Mg, S, Si, Fe) release from SN type-II, type-Ia, & AGB stars; stellar age, mass & yield; different IMF; mass & metal loss from starburst
- SN Feedback
 - Thermal feedback (↑ T) : inefficient, energy radiated away quickly
 - :: Kinetic feedback (\uparrow v)
- AGN accretion + feedback

30-Jun-15

SN Energy Feedback in MUPPI (Murante et al. 2015)

- Energy imparted to gas particles
 - Inside SPH smoothing length and cone with semi-aperture angle = 60°
 - Along path of least resistance
 - Negative density gradient
- Direct distribution of
 - Thermal energy
 - Efficiency fraction
 - Injected to local hot phase
 - Kinetic energy
 - Efficiency fraction, Probability
- No input expression of wind velocity & outflow mass loading
- Wind particles are decoupled from hydrodynamics

$$E_{th} = E_{SN} f_{fb,th} \frac{\Delta M_*}{M_{*,SN}}$$

$$E_{kin} = E_{SN} f_{fb,kin}$$

Simulation Runs (Barai et al. 2015)

Run	$L_{\rm box}$	N_{part}	$m_{ m gas}$	m_{\star}	L_{soft}	SF & SN	SF & SN feedback sub-resolution			
Name	[Mpc]		$[M_{\odot}]$	$[M_{\odot}]$	[kpc]	Model	v_w	$f_{ m fb,out}$	$f_{ m fb,kin}$	$P_{\rm kin}$
E35nw	35.56	2×320^3	8.72×10^{6}	$2.18 imes 10^6$	2.77 (comoving)	Effective	0			
E35 rvw	35.56	2×320^3	8.72×10^6	$2.18 imes 10^6$	2.77 (comoving)	Effective	$v_w(r)$			
E25cw	25	2×256^3	$5.36 imes10^6$	$1.34 imes10^6$	0.69 (physical)	Effective	350			
M25 std	25	2×256^3	$5.36 imes10^6$	$1.34 imes10^6$	0.69 (physical)	MUPPI		0.2	0.6	0.03
M25a	25	2×256^3	$5.36 imes10^6$	$1.34 imes10^6$	0.69 (physical)	MUPPI		0.4	0.4	0.03
M25b	25	2×256^3	$5.36 imes10^6$	$1.34 imes10^6$	0.69 (physical)	MUPPI		0.2	0.8	0.03
M25c	25	2×256^3	$5.36 imes10^6$	$1.34 imes10^6$	0.69 (physical)	MUPPI		0.2	0.6	0.01
M25d	25	2×256^3	$5.36 imes10^6$	$1.34 imes10^6$	0.69 (physical)	MUPPI		0.2	0.6	0.06
M50 std	50	2×512^3	$5.36 imes 10^6$	$1.34 imes 10^6$	0.69 (physical)	MUPPI		0.2	0.5	0.03

Star Formation Rate Density Evolution

Outflow measurement technique

Transform galaxy coordinates s.t. cold gas disk is rotating in X-Y plane

- Select gas particles:
- lying inside either cylinder
- moving at a high-velocity, |
 v_z| > V_{limit,outflow}
- if $(z^*v_z > 0) \Rightarrow$ Outflow
- if $(z^*v_z < 0) \Rightarrow$ Inflow

Setting the lower velocity threshold for outflow measurement

Adopt this for outflow velocity

P. Barai, INAF-OATs

easures escape velocity: easures escape outside halo Adopt this for mass outflow rate

Outflow velocity vs. galaxy SFR

Observation : Martin (2005), Grimes et al. (2009), Banerji et al. (2011), Bordoloi et al. (2013) - positive correlation of outflow speed with galaxy mass and SFR.

9

Mass loading factor (η = Mass outflow rate / SFR) vs. halo mass

30-Jun-15

P. Barai, INAF-OATs

Redshift Evolution of Outflow Velocity vs SFR

Redshift Evolution of Mass-Loading factor vs Halo Mass

Mass-Loading factor comparison with other studies

30-Jun-15

How many outflows escape the galaxy halo? (at R_{gal} versus at R_{vir})

Method	$N_{ m outflow}$	$f_{ m outflow}$
At R_{gal} using $ v_r > v_{\text{esc}}(R_{\text{gal}})$, in a cylinder	1842	0.93
At R_{gal} using $ v_r > v_{\text{esc}}(R_{\text{gal}})$, in a sphere	1936	0.97
At R_{vir} using $ v_r > v_{\text{esc}}(R_{\text{vir}})$, in a sphere	1734	0.87

Summary

- Can study impact of galactic winds on galaxy & IGM properties in cosmological hydrodynamic simulations
 - Still far away from self-consistently driving these winds in such sims
- Crucial to measure in post-processing the outflow properties w.r.t. that input in the sub-grid model
- MUPPI is more physically-motivated sub-resolution model that uses only local properties of gas and generates realistic:
 - Galactic outflows
 - Outflow velocity positive correlation with global galaxy SFR
 - Contant mass-loading value at z=2
 - Redshift evolution predicted over z = 1 5
 - Need more observational data
 - Disk galaxies
- Need connection and synergy between large-scale sims and isolated system high-resolution sims, to physically model processes, and still have a predictive power P. Barai, INAF-OATS 15

Extra Slides

Existing Models of SN Feedback

- Kinetic feedback : give velocity kick to gas
 - Energy-driven wind
 - Springel & Hernquist (2003)

 $v_w, \eta = \text{constant}$ $v_w = 3\sigma \sqrt{\frac{L}{L_{crit}} - 1}$

 σ_0

Most of the models assume that wind velocity and mass-loading scales with some global galaxy property (mass, velocity dispersion, SFR)

maurally-varying wind voice

- Barai et al. (2013)
- Combinations & variations of energy and momentum-unver
 - Schaye et al. (2010)
 - Dave et al. (2013)
 - Volgelsberger et al. (2014)
- Thermal feedback : increase gas temperature
 - Dalla Vecchia & Schaye (2012), Schaye et al. (2014)
- Turn off radiative cooling
 - Stinson et al. (2006)

P. Barai, INAF-OATs

Mass outflow rate vs. galaxy SFR

30-Jun-15

P. Barai, INAF-OATs

Prediction with Theoretical Estimate of the MUPPI model

30-Jun-15

Redshift Evolution of Outflow Number Fraction

Observation : Karman et al. (2014) - incidence of large-velocity outflow higher at z~3 than at z<1.