The Imprints of Disk Evolution on the Vertical Structure of the Milky Way Disk

> K. Schlesinger RSAA, Australian National University

Chemical and Dynamical Evolution of the Milky Way and Local Group galaxies Sexten Center for Astrophysics

The Milky Way Disk

- Formation processes?
- Radial migration?
- Merger rate?
- Distinct components?
- Similar for other galaxies?

(Martinez-Delgado et al. 2010)

Vertical Structure

- Constraints for various disk formation models
 - Accretion of stars from satellites (Abadi et al. 2003)
 - Accretion of gas-rich material (Brook et al. 2004, 2005)
 - Vertical heating via mergers/close encounters (Kazantzidis et al. 2008, 2009, Bird et al. 2011)
 - Radial migration (Sellwood & Binney 2002, Roskar et al. 2008, Schönrich & Binney 2009, Minchev et al. 2010, 2011, Loebman et al. 2011)
- Thin/Thick disk separability
- Measure in external galaxies

Previous Analyses

Work	Number of Stars	Metallicity	Distance Range	Spectral Types
Pagel & Patchett (1975)	133	Photometric	<25 pc	G
Wyse & Gilmore (1995)	127	Photometric	<30 pc	F/G
Rocha-Pinto & Maciel (1996)	287	Photometric	<25 pc	G
Flynn & Morell (1997)	179	Photometric	<25 pc	G/K
Favata et al. (1997)	91	Spectroscopic	<22 pc	G/K
Rocha-Pinto & Maciel (1998)	730	Photometric	<50 pc	F/G/K
Jørgensen (2000)	253	Photometric	<40 pc	F/G
Kotoneva et al. (2002)	431	Photometric	<25 pc	К

Survey	Number of Stars	Metallicity	Distance Range	Spectral Types
Geneva-Copenhagen Survey (GCS)	16,682	Photometric	<200 pc	F/G
RAdial Velocity Experiment (RAVE)	45,000	R~7,500	<1 kpc	
APOGEE	20,000	R~22,500 (IR)	0 <r<15 kpc<br="">0<z<1.5 kpc<="" td=""><td>Giants</td></z<1.5></r<15>	Giants
Gaia-ESO	≥10 ⁵	R≤20,000	4 <r<12 kpc<br="">0<z<3.5 kpc<="" td=""><td></td></z<3.5></r<12>	
HARPS	1111	R~115,000	⊙ Nhood	F/G/K
Bensby et al.	714	R~40,-11,000	⊙ Nhood	F/G
SEGUE	240,000 (75,000 G/K)	R~2,000	6 <r<11 kpc<br="">-2.5<z<2.5 kpc<="" td=""><td></td></z<2.5></r<11>	
SAGA	989	Photometric	7.6 <r<8.6 kpc<br="">0<z<1.5 kpc<="" td=""><td>K Giants</td></z<1.5></r<8.6>	K Giants

SEGUE Survey

- *ugriz* photometry
 14 < g < 20.3
- Large sky coverage
- Systematic target selection
- Low resolution optical spectra
- T_{eff} , log(g), [Fe/H], [α /Fe]
- Ca, Mg, (C, Si) (Fernández-Alvar et al., in prep)

Strömgren survey for Asteroseismology and Galactic Archaeology (Casagrande et al. 2014)

- Strömgren
 photometry of giants
 and dwarfs in the
 Kepler field
- Over 29,000 sources as faint as *y*~18
- 989 with seismic information

(Casagrande et al., 2014)

Strömgren survey for Asteroseismology and Galactic Archaeology (Casagrande et al. 2014)

- IRFM to get T_{eff} , F_{bol} , θ , E(B-V)
- Color indices to get [Fe/ H]
- Kepler Δv , v_{max} to get M, log(g), Radii
- Mixed modes to determine evolutionary phase

Parameter	Uncertainty
Temperature	82 K
[Fe/H]	0.17 dex
log(g)	0.006 dex
Distance	3.3%
Mass	6.0%
Age	10-30%

Summary

- Negative gradient (-0.23 dex/kpc) over disk reflects transition between [α /Fe] populations with respect to height
- See chemical gap in SEGUE but different than that of other surveys
- Individual [α /Fe] subsamples show negligible change with height
 - Consistent behavior from $0.1 < [\alpha/Fe] < 0.6$
 - Similar to various chemodynamical simulations (e.g., Bird et al. 2013, Minchev et al. 2014)
- See an age gradient of ~4.5 Gyr/kpc

Future Work

- SAGA gradients in age bins
- Age-Metallicity relation
- SAGA in conjunction with ESI and APOGEE chemical information
- Kinematic analysis of SAGA members

- High-resolution survey of a million stars in the Southern sky
- Survey well under way, with 100,000 targets observed

http://www.mso.anu.edu.au/ galah/home.html

Twitter: @galahsurvey

