

Understanding the formation of the Milky Way in the era of Gaia

Stille:

Ivan Minchev Leibniz-Institut fur Astrophysik Potsdam (AIP)

∆=-0.076

Leibniz-Institut für Astrophysik Potsdam

Talk outline

• Effect of disk asymmetries (bars, spirals) on stellar orbits.

• Radial migration in galactic disks.

- Our chemo-dynamical model (Minchev, Chiappini & Martig 2013, 2014).
- On the formation of galactic thick disks.

Resonances in galactic disks

Stellar orbits near resonances

Near OLR

Single spiral wave

Outside OLR+CR

Near Corotation (CR)

Inside OLR+CR

2 spiral waves

Radial migration

Chemo-dynamical evolution modeling of the Milky Way

Classical chemical evolution modeling

- Classical chemical evolution models (Matteucci & Francois 1989; Prantzos & Aubert 1995; Chiappini et al. 1997, 2001).
- Stars assumed to remain close to their birth places.

Classical chemical evolution modeling hampered by radial migration

Stars move away from their birth places (Sellwood and Binney 2002).

Classical chemical evolution modeling hampered by radial migration

Stars move away from their birth places (Sellwood and Binney 2002).

Classical chemical evolution modeling hampered by radial migration

- Stars move away from their birth places (Sellwood and Binney 2002).
- We need to recover the migration efficiency as a function of Galactic radius and time.

Our chemo-dynamical model: ingredients

- A high-resolution simulation of a disk assembly in the cosmological context:
 - Gas infall form filaments and gas-rich mergers
 - Merger activity decreasing toward redshift zero
- Disk properties at redshift zero consistent with the dynamics and morphology of the Milky Way:
 - The presence of a Milky Way-size bar
 - A small bulge
 - Bar's Outer Lindblad Resonance at ~2.5 disk scale-lengths
- A detailed chemical evolution model:
 - Matching several observational constraints in the Milky Way.

Simulation in cosmological context Martig et al. (2009, 2012)

Stars born hot at high redshift: Similar to Brook et al. (2012), Stinson et al. (2013), Bird et al. (2013)

30

Chemical model

Constrained by:

- The solar and present day abundances of more than 30 elements
- The present SFR
- The current stellar, gas and total mass densities at the solar vicinity
- The present day supernovae rates of type II and Ia
- The metallicity distribution of G-dwarf stars

Only thin disk chemistry used!

Origin and metallicity distributions of local stars

Older populations arrive from progressively smaller galactic radii due to their longer exposure to migration.

Origin and metallicity distributions of local stars

The metallicity distribution

lzl > 500 pc

For both model and observations the MDF peak shifts to lower [Fe/H] with distance from the disk plane

The vertical metallicity gradient

Schlesinger et al. (2012), G-dwarfs

Bovy model, Rix & Bovy (2013)

Minchev et al. (2013)

The [Fe/H]-[O/Fe] relation

Kinematical selection of thin- and thick-disk populations

The [Fe/H]-[O/Fe] relation

Kinematical selection of thin- and thick-disk populations

Variation of velocity dispersion with [Mg/Fe]

Velocity dispersion drops at the high-[Mg/ Fe] end for each metallicity sub-population

Minchev et al. (2013) model

Density not shown in this figure!

Density strongly declines away from the mean as most stars born close to the solar radius.

Adibekyan + Haywood sample

A density plot.

The age-[α/Fe] and age-[Fe/H] relations

Comparison between our model and the Adibekyan + Haywood sample

The age-[α/Fe] and age-[Fe/H] relations

Comparison between our model and the Adibekyan + Haywood sample

The age-[α/Fe] and age-[Fe/H] relations

Comparison between our model and the Adibekyan + Haywood sample

On the formation of galactic thick disks

Thick disks are extended

NGC 4762 - a disk galaxy with a bright thick disk (Tsikoudi 1980)

Thick disks are extended

Chemically/Age defined Milky Way thick disk centrally concentrated (e.g., not extended)

Chemically/Age defined Milky Way thick disk centrally concentrated (e.g., not extended)

Simulations with strong merger activity at high redshift

Simulated disks **always flare** (for a single stellar population)

Mergers flare disks

Migration flares disks

But observed edge-on disks do not flare (de Grijs 1998; Comerón et al. 2011)!

Disk flaring in inside-out formation

Martig sims Scannapieco sims

Disk flaring in inside-out formation

Martig sims Scannapieco sims

The structure of simulated thick disks

Martig sims Scar

Age gradient in thick disk predicted

[a/Fe] gradient away from disk plane in APOGEE data

[α/Fe] gradient away from disk plane in APOGEE data

Inversion in metallicity gradients in APOGEE giants

[α/Fe] gradient in the thick disk of NGC891?

Calar Alto data currently being reduced (CALIFA)

Approved MUSE on VLT proposal approved (PI M. Martig) for NGC 5746 and NGC 4710

Summary

- Great improvements in chemo-dynamics in cosmological simulations, however, still hard to apply to Milky Way.
- Our hybrid chemo-dynamical model consistent with a wide range of observational constraints.
 - Great care taken in defining properly the solar radius.
 - Technique can be used to probe a range of chemical evolution histories.
 - More than 30 elements available for doing Galactic Archeology (e.g., GALAH, APOGEE, Gaia + 4MOST+WEAVE).
- Thick disks composed of the flares of populations of different ages:
 explains extended morphologically defined thick disks in external galaxies.
 - explains the centrally concentrated older populations in the MW.
 - explains the inversion of metallicity and $[\alpha/Fe]$ gradients away from disk midplane.

A new chemo-kinematic relation can recover the disk merger history

Vertical velocity dispersion as a fn of [Mg/Fe] in RAVE

Velocity dispersion drops at [Mg/Fe] > 0.4 dex

Minchev + RAVE (2014)

Vertical velocity dispersion as a fn of [Mg/Fe] in RAVE

Origin of stars currently in the solar neighborhood

Origin of stars currently in the solar neighborhood

Origin of stars currently in the solar neighborhood

For a given metallicity bin, stars coming from the inner disc are kinematically colder and older.

Cool old stars arrive from inner disk during mergers

Old stars coming from the inner disk are cooler than locally born stars by up to 30 km/s.

Slope becomes negative for the last several Gyr (no significant mergers).

Explains inversion of vel. dispersion - [Mg/Fe] relation in RAVE and SEGUE G-dwarf data.

Cool old stars arrive from inner disk during mergers

Explains inversion of vel. dispersion - [Mg/Fe] relation in RAVE and SEGUE G-dwarf data.

Migration vs blurring

Comparison between SFH in chemical model and in simulation

Minchev, Chiappini & Martig (2014)

Gas migrates similar to stars.

 The effect of inward and outward flows mostly cancel out.

The radial metallicity gradient

The radial metallicity gradient

Minchev, Chiappini & Martig (2014)

Interplay among different age groups is important.

Disk evolution in the cosmological context

Simulations described in Martig et al. (2009, 2012)

The [Fe/H]-[O/Fe] relation

Model kinematical selection

Ramírez et al. (2013) data

The age-velocity relation

Martig, Minchev and Flynn (2014b)

Vertical disk scale-heights

Thick disk from stars with ages > 8 Gyr, [O/Fe] > 0.15 dex and [Fe/H] < -0.7 dex</p>

The effect of migration on the chemical gradients

- Strong impact on the old stars
- In the last 2 Gyr gradients almost unaffected

 Bar corotation acts as a pivot point

Migrators' contribution to the disk velocity dispersion in the absence of mergers

Vertical velocity dispersion

- Some increase in velocity dispersion from outward migrators.
- Some decrease in velocity dispersion resulting from inward migrators.
- Negligible overall effect to disk thickening.

Vertical disk cooling!

Migration cools the disk during mergers

Minchev, Chiappini and Martig (2014)

Conservation of vertical action

Vertical and radial actions conserved if:

- Vertical motion decouples from the radial motion
- Stars migrate (change guiding radii) slower than vertical and epicyclic oscillations.

Then
$$J_z = E_z/\nu = Const.$$

Vertical energy Vertical epicyclic frequency
From Gauss' law and Poisson's equation $\nu \sim \sqrt{2\pi G\Sigma}$.
 $\Sigma \sim \exp(-r/r_d) \longrightarrow \nu(r) \sim \exp(-r/2r_d)$
Therefore, to preserve vertical action $\langle E_z \rangle \sim \sigma_z^2 \sim \exp(-r/r_d)$