Molecular clouds properties in galactic scale simulations

Sergey Khoperskov

Università degli Studi di Milano

Star formation in galaxies

$$\mathrm{SFR} = \frac{\epsilon}{t_{\mathrm{SF}}} M_{\mathrm{gas}}$$

NGC 5055

GMCs are the nurseries for the majority of the stellar population

Clouds properties and evolution govern the galaxy's star formation rate.

Outline

I. Chemo-dynamical model of a galactic disk

II. GMCs molecular content: H₂, CO. Dark gas

III. SFR calculation: role of the cloud definition

IV. GMCs scaling relations

Outline

I. Chemo-dynamical model of a galactic disk

II. GMCs molecular content: H₂, CO. Dark gas

III. SFR calculation: role of the cloud definition

IV. GMCs scaling relations

Model

Isolated Milky Way size galaxies

- Multiphase gas-dynamics (uniform grid, 5 pc spatial resolution)
- Non-equilibrium chemical kinetics (20 species, including H₂, CO ≈50 chemical reactions, UMIST)

- N-body stellar population $(\approx 2.10^{6} \text{ particles})$
- Stellar evolution (STABURST'99)

Model

Isolated Milky Way size galaxies

- Multiphase gas-dynamics (uniform grid, 5 pc spatial resolution)
- Non-equilibrium chemical kinetics (20 species, including H₂, CO ≈50 chemical reactions, UMIST)

- N-body stellar population ($\approx 2.10^6$ particles)
- Stellar evolution (STABURST'99)

- Star formation
 (based on the local Jeans instability criterion NO SF threshold)
- Feedback (SNe, stellar wind, mass loss according to STARBURST'99)
- Radiation transfer of UV flux from stellar population (photodissociation of molecule)

Sample 33 kpc

- 8 MW-size galaxies
- Various morphology
- Spatially resolved clouds

Sample

- 8 MW-size galaxies
- Various morphology
- Spatially resolved clouds

Sample

- 8 MW-size galaxies
- Various morphology
- Spatially resolved clouds

Sample

- 8 MW-size galaxies
- Various morphology
- Spatially resolved clouds

Initial fragmentation of gas and compression by stellar bar/spirals

Initial fragmentation of gas and compression by stellar bar/spirals

Molecules formation time scale H->H₂ C,O->CO

≈ 10-20 Myr

Initial fragmentation of gas and compression by stellar bar/spirals

Molecules formation time scale H->H₂ C,O->CO

≈ 10-20 Myr

SNe suppress the SF

Initial fragmentation of gas and compression by stellar bar/spirals

Molecules formation time scale H->H₂ C,O->CO

≈ 10-20 Myr

SNe suppress the SF

Constant SFR rate because of the self-regulated SF

Extraction of clouds

column density threshold

CO integrated intensity threshold

Extraction of clouds

column density threshold

CO integrated

Extraction of clouds 300-1000 clouds column density CO integrated threshold intensity threshold - - - - - - - - - -• • \bullet • • -10 -5 -1010 x [kpc] 5 x [kpc] 10 -5

Outline

I. Chemo-dynamical model of a galactic disk

II. GMCs molecular content: H₂, CO. Dark gas

III. SFR calculation: role of the cloud definition

IV. GMCs scaling relations

Most of the mass in a molecular cloud is in the form of H₂

Most of the mass in a molecular cloud is in the form of H_2

Most of the mass in a molecular cloud is in the form of H₂

Most of the mass in a molecular cloud is in the form of H_2

Transition HI-> H2 at ~5-8 M_{\circ} pc⁻² Constant shielding layer of HI -> H2 formation

CO

$N(H_2)[cm^{-2}] = X_{co} W_{co} [K km s^{-1}]$

H₂ / CO clouds structure

Gas density contours

Conversion factor

 $N(H_2)[cm^{-2}] = X_{co} W_{co} [K km s^{-1}]$

Dickman et al. 1986

Conversion factor

$N(H_2)[cm^{-2}] = X_{co} W_{co} [K km s^{-1}]$

Dickman et al. 1986

$Dark \ gas \ amount \ For \ standard \ X_{co}: \ N_{H2}^{*} = 2 \times 10^{20} \ W_{CO}$

$Dark gas amount \\ For standard X_{co}: N_{H2}* = 2 \times 10^{20} W_{CO}$

Limited density range of the clouds description by $L_{\rm CO}$

Dark gas amount in GMCs

Constant X_{co} : up to 15% of gas is missed in the entire disc

Outline

I. Chemo-dynamical model of a galactic disk

II. GMCs molecular content: H₂, CO. Dark gas

III. SFR calculation: role of the cloud definition

IV. GMCs scaling relations

Clouds state

Virial parameter $\alpha = 5\sigma^2 R/(G M)$

a≪1	a~1	a=2	a≫1
collapsing or must be supported by something more than internal turn	gravitationally bound and stabilized by internal thermal	threshold between gravitationally bound and unbound objects	externally bound or transient features

Virial parameter $\alpha = 5\sigma^2 R/(G M)$

Virial parameter $\alpha = 5\sigma^2 R/(G M)$

Clouds PDF

Clouds PDF

PDF(H₂) of all clouds is a superposition of two PDFs?

Clouds PDF

Unbound clouds tend to have higher H₂ abundance

PDF(H₂) of all clouds is a superposition of two PDFs?

GMCs PDF

Turbulent cloud-> Lognormal at low column densitiesInfluence of gravity-> Power-law at highest column densities

GMCs PDF

Turbulent cloud Influence of gravity

-> Lognormal at low column densities
-> Power-law at highest column densities

Feedback and ionisation

Compressed layer -> Lognormal (turbulent) or Power-law (homogeneous)

• Stellar feedback makes clouds *unbound* in terms of the *virial parameter*

 $\alpha = 5\sigma^2 R/(G M)$

 Clouds can be compressed due to motion through the potential well (spirals, bar)

Outline

I. Chemo-dynamical model of a galactic disk

II. GMCs molecular content: H₂, CO. Dark gas

III. SFR calculation: role of the cloud definition

IV. GMCs scaling relations

Cloud size - los velocity dispersion

 $\sigma_v \sim R^{1/3}$ Kolmogorov (1941) cascade of the turbulent energy

Luminosity - size relation

Summary

Despite some variations of GMCs physical parameters, the scaling relations (Larson's relations) are rather robust towards to the cloud definition method.

Comparison of SFR(UV) vs SFR(clouds) lets to investigate evolutionary stages of clouds or its lifetime.

Dark gas amount can reaches up to 15% of the GMCs mass in the entire galactic disc. Thus it can affect on the estimated SF rate.

Scaling relations as function of intensity threshold

GMCs scaling relations (Larson's laws)

36

Virial mass - luminosity relation

GMCs PDF in M51

Thresholds matching

Parametric curve Nthtot (WthCO)

CO integrated intensity threshold Wth_{CO}

Chemical kinetics

$$\frac{\partial n_i}{\partial t} + \frac{1}{a} \nabla \cdot (n_i \mathbf{v}) = \sum_j k_{ij}(T) n_i n_j + \sum_j \Gamma_j^{\text{ph}} n_j$$

two-body reactions Photoreactions

UMIST RATE12 astrochemistry.net

No	r1	r2	r3	p1	p2	p3
2	Н	С		CH	$h\nu$	
8	Η	0		OH	$h\nu$	
594	H_2^+	H_2		H_3^+	Η	
640	H_3^+	С		CH^+	H2	
641	H_3^+	0		OH^+	H2	
665	H_3^+	CO		HCO^+	H2	
791	He^+	H2		H^+	Η	He
835	He^+	CO		C^+	0	He
1073	C^+	H_2		CH^+	Η	
3202	H^+	е		H	$h\nu$	
3204	H_3^+	е		H_2	Η	
3206	He^+	е		He	$h\nu$	
3208	C^+	е		\mathbf{C}	$h\nu$	
3209	CH^+	е		С	Η	
3223	OH^+	е		0	Η	
3255	HCO^+	е		CO	Η	
3635	H	$h\nu_{CR}$		H^+	е	
3636	He	$h\nu_{CR}$		He^+	e	
3642	H_2	$h\nu_{CR}$		H_2^+	e	
3643	H_2	$h\nu_{CR}$		H	Η	
3646	С	$h\nu$		C+	e	
3663	H_2	$h\nu$		Н	Η	
3701	CO	$h\nu$		\mathbf{C}	0	
10000	C^+	CH		HCO^+	$h\nu$	
10001	0	CH		CO	Η	
10002	С	OH		CO	Η	
10003	Me^+	е		Me	$h\nu$	
10004	H_3^+	Me		Me^+	е	H_2
10005	CH	$h\nu$		\mathbf{C}	Η	
10006	OH	$h\nu$		0	Η	
10007	Me	$h\nu$		Me+	е	
10008	HCO^+	$h\nu$		CO	Η	
10009	Н	DUST		H2	$h\nu$	
10010	Η	е		H^+	е	e