

On the connection between the galactic disk and the galactic bar

Alessandro Spagna

INAF – Osservatorio Astrofisico di Torino

In collaboration with: Anna Curir, Antonaldo Diaferio, Ronald Drimmel, Mario G. Lattanzi, Francesca Matteucci, Paola Re Fiorentin, Ana L. Serra, Emanuele Spitoni

Outline

- 1. formation scenarios
- 2. N-body simulations
- 3. Chemo-kinematic signatures
- 4. Conclusions

Thick disk:

formation scenarios

A. Spagna - Sesto (BZ), 20 January 2015

Majewski 1993, Ann. Rev A&A, 31, 575

Table 1 Models of Intermediate Population II Formation

			· · · · · · · · · · · · · · · · · · ·		
Model	Thin disk disjoint?	Halo disjoint?	Key age features	Key abundance features	Key kinematic features
Pre-thin disk ("top down") models	- massimus"				
 First phases of partial pressure support as gas begins dissipational collapse (Sandage 1990a) 	No	No	No age gap with halo	Gradient	Gradient
2. Rapid ELS collapse, gap in star formation, then pressure-supported collapse (Larson 1976; Gilmore 1984)	No	Yes	Age gap with halo	Gradient	Gradient
 Rapid increase in dissipation due to line radiation cooling (Wyse & Gilmore 1988; Burkert et al 1992) 	No	Yes	Small range of age	[Fe/H] > -1, little/no gradient	Gradient
 Formation disconnected from halo, "disk first" (Jones & Wyse 1983, Norris & Ryan 1991) 		Yes	Can overlap with halo		
Post-thin disk ("bottom up") models					
5. Secular kinematic diffusion of thin disk stars (Norris 1987)	No	Yes	Wide range of ages. Gradient, overlaps thin disk.	Gradient, [Fe/H] ≤ old disk	Gradient
 Violent thin disk heating by satellite accretion (Carney et al 1989; Hernquist & Quinn 1989, Quinn et al 1992) 	Yes	Yes	Older than oldest thin disk star	Expansion of disk gradient at event	Modest asymmetric drift, radial σ_z gradient
 Accretion of thick disk material directly, e.g. debris of accreted satellite 	Yes	?	Lots of possibilities	Probably no gradient	?
 Halo response to disk potential (van der Kruit & Searle 1981a,b; Gilmore & Reid 1983) 	Yes	No	As old as halo	Halo metallicity properties	Halo (large) asymmetric drift

Majewski 1993, Ann. Rev A&A, 31, 575

Table 1 Models of Intermediate Population II Formation

······			· · · · · · · · · · · · · · · · · · ·	·····	
Model	Thin disk disjoint?	Halo disjoint?	Key age features	Key abundance features	Key kinematic features
Pre-thin disk ("top down") models	a un de statis (
1. First phases of partial pressure support as gas begins dissipational collapse	No	No	No age gap with halo	Gradient	Gradient
(Sandage 1990a)					
2. Rapid ELS collapse, gap in star 🛛 🧧 🥄	Jo	Yes	Age gap with halo	Gradient	Gradient
formation, then pressure-supported collapse (Larson 1976; Gilmore 1984)		40	Wn		
 Rapid increase in dissipation due to line radiation cooling (Wyse & Gilmore 1988; Burkert et al 1992) 	No	Yes	Small range of age	[Fe/H] > -1, little/no gradient	Gradient
 4. Formation disconnected from halo, "disk first" (Jones & Wyse 1983, Norris & Ryan 1991) 		Yes	Can overlap with halo		
Post-thin disk ("bottom up") models					
5. Secular kinematic diffusion of thin disk stars (Norris 1987)	No	Yes	Wide range of ages. Gradient, overlaps thin disk	Gradient, $[Fe/H] \le old \ disk$	Gradient
 Violent thin disk heating by satellite accretion (Carney et al 1989; Hernquist & Quinn 1989, Quinn et al 1992) 	Yes	Yes	Older then exclose thin disk star	Expansion of disk gradient at event	Modest asymmetric drift, radial σ_z gradient
 Accretion of thick disk material dir e.g. debris of accreted satellite 	Os	?	Lots of possibilities	Probably no gradient	?
 8. Halo response to disk potential (van der Kruit & Searle 1981a,b; Gilmore & Reid 1983) 	Yes	No	As old as halo	Halo metallicity properties	Halo (large) asymmetric drift

583

Rix & Bovy 2013, Astron. Astrophys. Rev. 21, 61

What processes might determine galaxy disk structure?

In particular, what processes set the exponential radial and vertical profiles seen in the stellar distributions of galaxy disks?

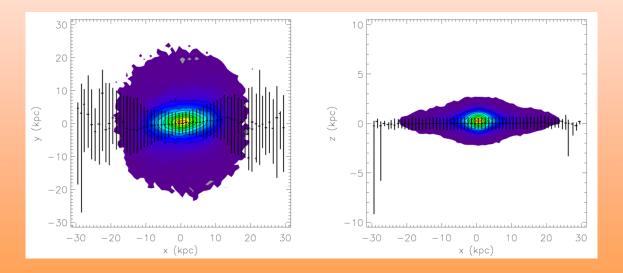
Rix & Bovy 2013, Astron. Astrophys. Rev. 21, 61

What processes might determine galaxy disk structure?

In particular, what processes set the exponential radial and vertical profiles seen in the stellar distributions of galaxy disks?

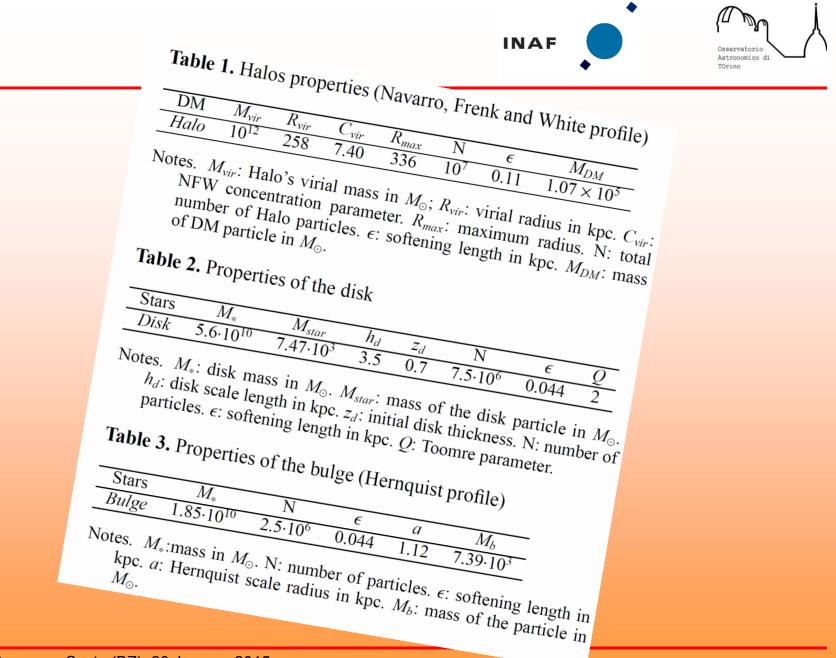
Were all or most stars born from a well-settled gas disk near the disk plane and acquired their vertical motions subsequently?

Or was some fraction of disk stars formed from very turbulent gas early on (e.g., Bournaud et al. 2009; Ceverino et al. 2012), forming a primordial thick disk?

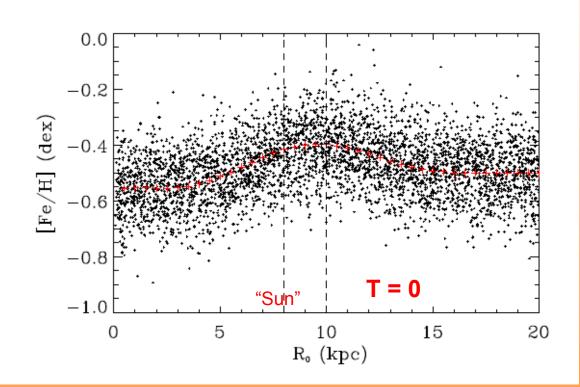


N-body simulations

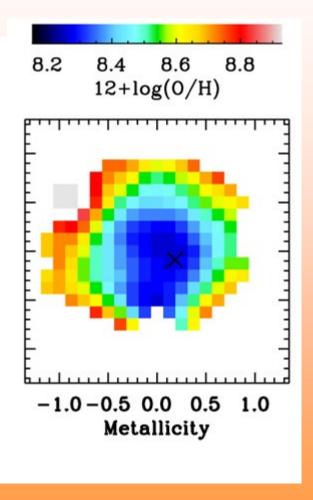
Two cases of a Milky Way-like galaxies:


- a. **BARRED DISK GALAXY**, produced by instability of a stellar disk (Tab. 2) within a DM halo (Tab. 1)
- **b. UNBARRED DISK GALAXY**, including an additional massive central bulge (Tab. 3)

Barred galaxy:


density distribution of the disk particles after a dynamical evolution of **T= 6 Gyr**

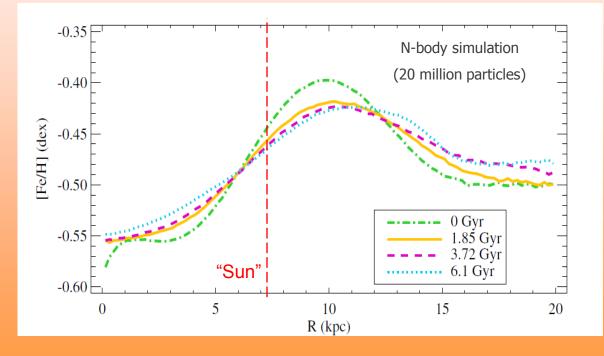
(*Curir* et al. 2012, A&A, 545, A133)


A. Spagna - Sesto (BZ), 20 January 2015

Initial condition. Each particle in the initial configuration is tagged with a [Fe/H] label according to the initial radial chemical model S2IT from *Spitoni & Matteucci* (2011).

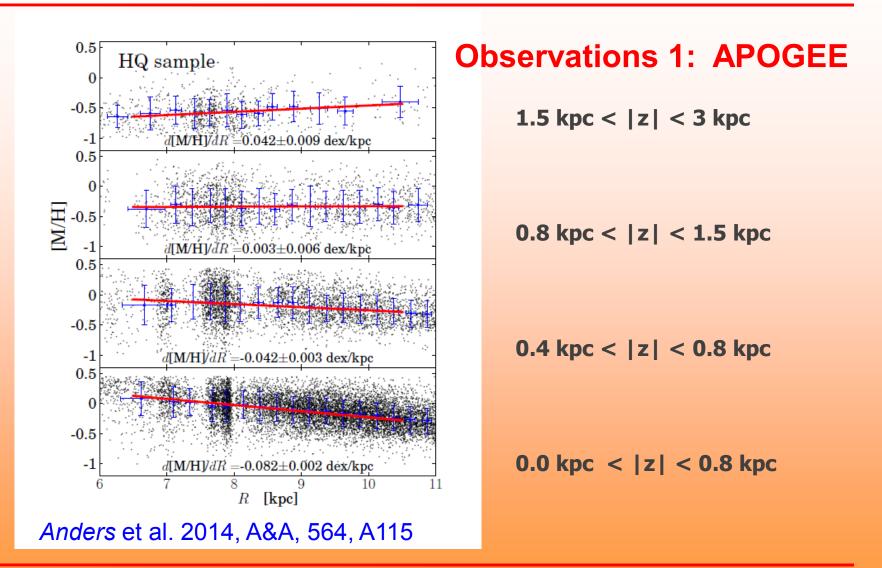
AMAZE/LSD data shows examples of "inverted" positive metallicity gradients among face-on undisturbed disk galaxies at **z** ~3.

(Cresci et al. 2010)

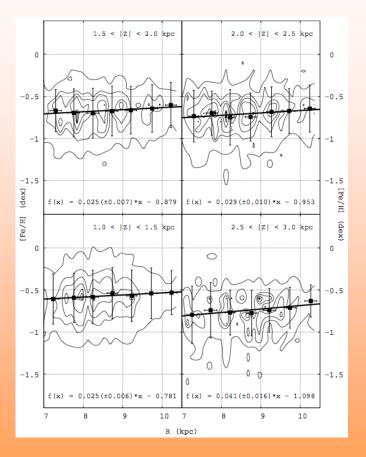

Thick disk:

Chemo-kinematic signatures

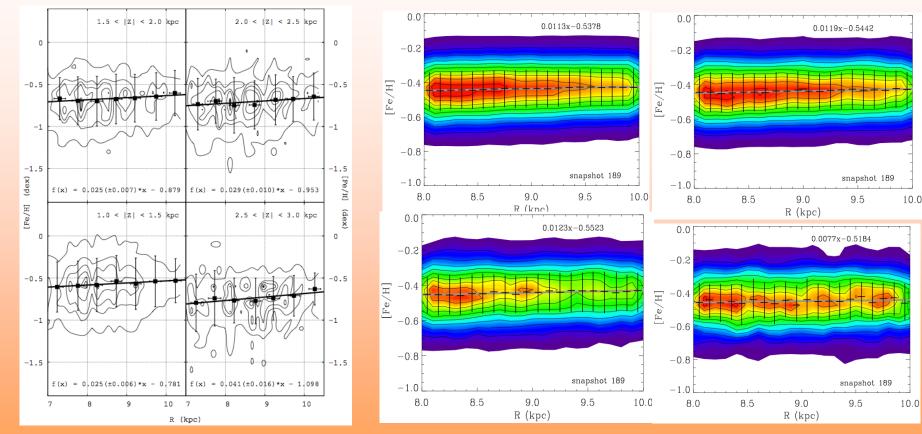
A. Spagna - Sesto (BZ), 20 January 2015


The secular disk evolution does *not* seem significantly the disk chemical profiles in *both* the **barred/unbarred** disks examined

Evolution of the median radial chemical distribution of a simulated *barred* Milky Way-like galactic disk.


(Figure from *Curir* et al. 2014, ApJ, 784, L24).

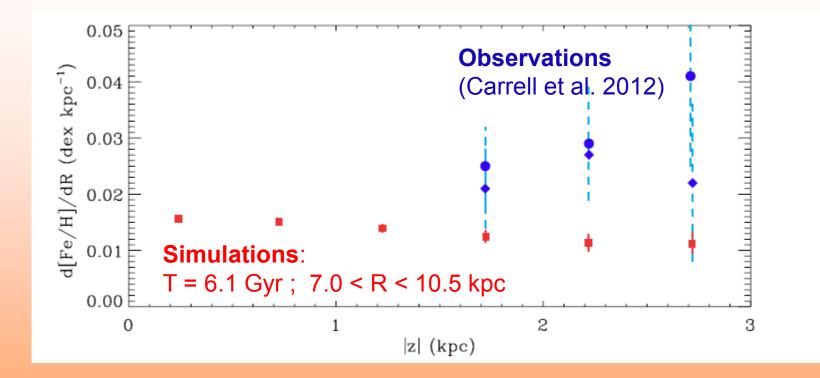
Observations 2:


(Carrell et al. 2012, ApJ, 144, 185)

A. Spagna - Sesto (BZ), 20 January 2015

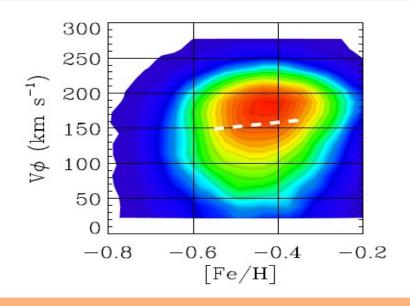
INAF

Observations 2:

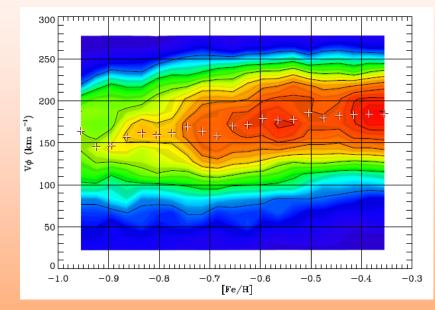


(Carrell et al. 2012, ApJ, 144, 185)

(Curir et al. 2014, ApJ, 784, L24)

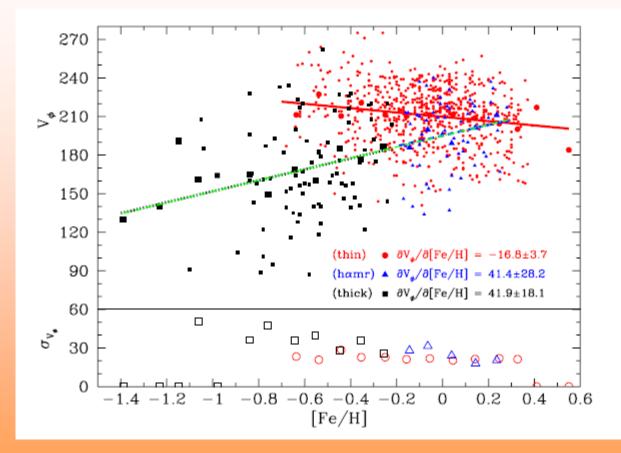


(Curir et al. 2014, ApJ, 784, L24)

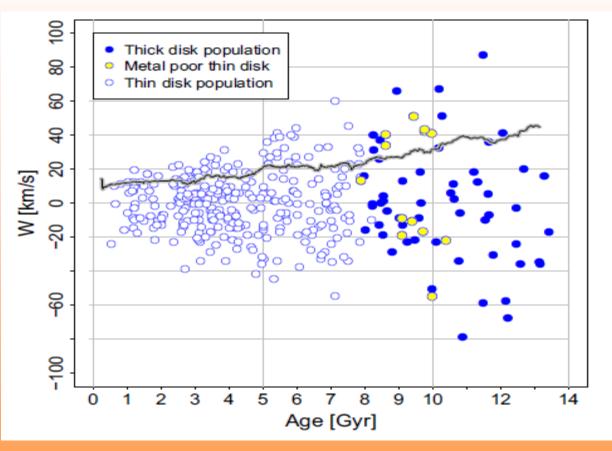


Rotation - metallicity correlation

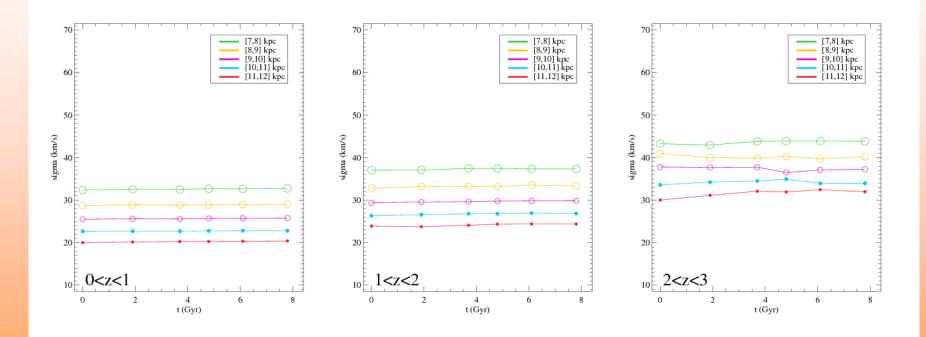
Simulations

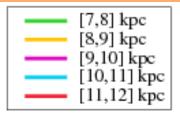

Observations

100 km/s/dex 1.5 kpc < |z| < 2.0 kpc (T=5 Gyr) (*Curir* et al. 2012, A&A, 545, A133) **40-50 km/s/dex** 1.5 kpc < |z| < 3.0 kpc (*Spagna* et al. 2010, A&A, 510, L4)

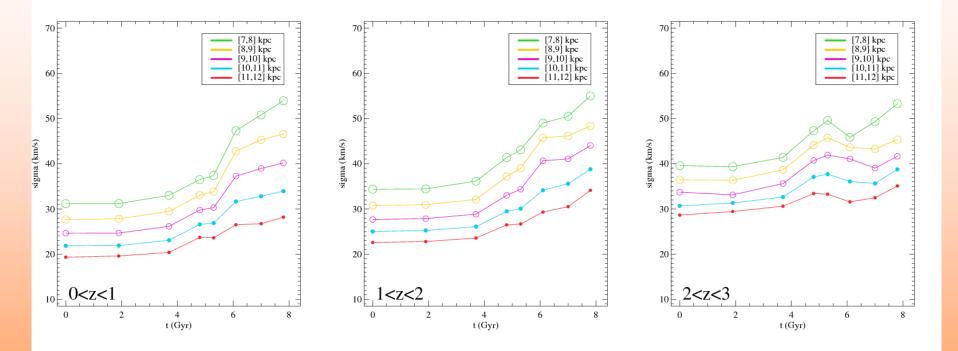

Rotation - metallicity correlation

(Adibekian et al. 2013, A&A, 554, A44)

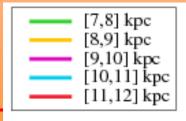

Vertical velocity distribution


(Haywood et al. 2013, A&A, 560, A109

Vertical velocity distribution

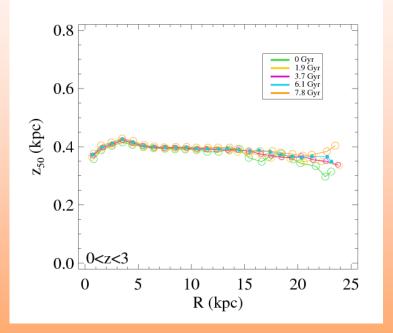


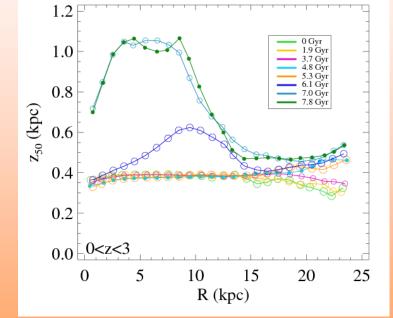
N-body simulation: Unbarred disk



Vertical velocity distribution

N-body simulation: **Barred disk**





Vertical spatial distribution

Unbarred disk

Barred disk

(Spagna et al. 2015, in preparation)

Conclusions

- A Vφ vs. [Fe/H] correlation (Spagna et al 2010) can be produced in a Milky Way –like disk, if we assume an initial radial chemical gradient as suggested by Spitoni and Matteucci (2011) in their chemical evolution model for an early disk
- The **[Fe/H] vs. R gradient** recently observed in the MW thick disk (eg. *Carrell et al.* 2012) can also be reproduced by such a model
- The secular disk evolution does *not* affect significantly the disk chemical profiles in *both* the **barred/unbarred** disks examined
- We found that the presence of a strong **bar** can increase significantly the vertical velocity dispersion, σ_{Vz} , and the **thickness**, h_z , of the whole inner disk.