First stars and their local relics

Raffaella Schneider
INAF/Osservatorio Astronomico di Roma

the FIRST team and collaborators

Matteo de Bennassuti, PhD INAF/OAR

Stefania Marassi, Pdoc INAF/OAR

Luca Graziani, Pdoc INAF/OAR

Rosa Valiante, Pdoc INAF/OAR

Marco Limongi INAF/OAR

Stefania Salvadori Kepteyn, Groningen

Simone Bianchi INAF/OAA

Andrea Ferrara Scuola Normale

Gen Chiaki Tokyo University

Kazu Omukai Tohoku University

the formation of the first stars

Standard model for the formation of the first Pop III stars predicts an IMF dominated by high-mass stars

\checkmark collapse of $\approx 10^{6} M_{\text {sun }}$ mini-halos at $z \approx 20$
$\checkmark \mathrm{H}_{2}$ cooling
\checkmark gas cloud becomes Jeans unstable $M_{\text {jeans }} \approx 10^{3} M_{\text {sun }}$

$=$ accretion rate $\mathrm{dM} / \mathrm{dt} \approx \mathrm{M}_{\mathrm{J}} / \mathrm{t}_{\mathrm{ff}} \approx \mathrm{c}_{\mathrm{s}}{ }^{3} / \mathrm{G} \approx \mathrm{T}^{3 / 2}\left(\times 100\right.$ larger than $\left.@ \mathrm{Z}_{\text {sun }}\right)$
\Rightarrow accreted gas mass $M_{\star} \cong[10-1000] M_{\text {sun }}$
Omukai \& Palla 2003; Bromm et al 2004; O'Shea et al. 2007; Tan \& McKee 2004; McKee \& Tan 2008; Hosokawa et al. 2011,2012; Hirano+14, Susa+14; Hirano+15

Omukai et al. 2005

An ab-initio calculation of the Pop III IMF

the end-products of Pop III stars

Pop III IMF?

$10 \mathrm{M}_{\text {sun }}<\mathrm{M}_{*}<40 \mathrm{M}_{\text {sun }}$ metal production
$140 M_{\text {sun }}<M_{*}<260 M_{\text {sun }}$ metal production

Heger \& Woosley (2002), Yoon et al (2012), Marassi et al. in prep

the end-products of Pop III stars

Pop III IMF?

$10 \mathrm{M}_{\text {sun }}<\mathrm{M}_{\star}<40 \mathrm{M}_{\text {sun }}$ metal production
$140 M_{\text {sun }}<M_{*}<260 M_{\text {sun }}$ metal production

Heger \& Woosley (2002), Yoon et al (2012), Marassi et al. in prep

H_{2}, metal and dust-driven fragmentation: three different mass-scales

stellar archaeology with the most metal poor stars

$[\mathrm{Fe} / \mathrm{H}]<-3[\mathrm{Fe} / \mathrm{H}]<-5$

Survey	Effective sky coverage	Effective mag limit	$\begin{gathered} N<-3.0 \\ \text { (EMP) } \end{gathered}$	$N<-5.0$ (HMP)	People
HES	6,400 deg^{2}	$B<16.5$	200	2	Christlieb et al.
SEGUE	1,000 deg ${ }^{2}$	$B<19$	$(1,000)$	(10)	Beers et al.; Caffau et al.
LAMOST	12,200 deg^{2}	$B<18.0$	$(3,000)$	(30)	Zhao et al.
SSS	20,000 deg^{2}	$B<17.5$	$(2,500)$	(25)	Keller et al.
2014 Nature, 506, 463 A single low-energy, iron-poor supernova as the source of metals in the star SMSS J031300.36-670839.3					
[$\mathrm{Fe} / \mathrm{H}]<-7.1$					

the metallicity distribution function of the Galactic halo

Schörck et al. 2009
Christlieb 2013

carbon-enhanced metal poor stars

~ 20 \% of stars with $[\mathrm{Fe} / \mathrm{H}]<-2$ are C-enhanced: [C/Fe] > 0.7

CEMP - r/s
mass transfer from an AGB companion in binary systems

CEMP - no
metal yields from faint SNe with mixing/fallback

Yong et al. 2013; Norris et al. 2013

The frequency of CEMP-no stars

$[\mathrm{Fe} / \mathrm{H}] \leq-2.0,20 \%$ exhibit $[\mathrm{C} / \mathrm{Fe}] \geq+0.7$
$[\mathrm{Fe} / \mathrm{H}] \leq-3.0,43 \%$ exhibit $[\mathrm{C} / \mathrm{Fe}] \geq+0.7$
$[\mathrm{Fe} / \mathrm{H}] \leq-4.0,81 \%$ exhibit $[\mathrm{C} / \mathrm{Fe}] \geq+0.7$

Questions that we want to address:

What are the formation pathways of C-normal and C-rich stars?

What are the physical processes that shape the low-[Fe/H] tail of the MDF?

Why is the relative fraction of C-normal and C-rich stars varying with $[\mathrm{Fe} / \mathrm{H}]$?

simulating the birth environment of C-normal and C-rich stars

simulating the birth environment of C-normal and C-rich stars

Schneider et al. 2012

simulating the birth environment of C-normal and C-rich stars

a single formation pathway based on dust-driven fragmentation

GAMETE

GAlaxy MErger Tree and Evolution

Salvadori et al. 2007, 2008, 2009; Valiante et al. 2011, 2014; de Bennassuti et al. 2014

GAMETE

GAlaxy MErger Tree and Evolution

Salvadori et al. 2007, 2008, 2009; Valiante et al. 2011, 2014; de Bennassuti et al. 2014

star formation and chemical evolution

The MW and its dusty progenitors

The MW and its dusty progenitors

gas and dust scaling relations

de Bennassuti et al 2014
data points: sample of local Virgo galaxies Corbelli et al. (2012)

data points:
sample of GRB hosts $0.1<z<6.3$ Zafar \& Watson (2013) Local dwarfs Galametz et al. (2011)

Madden et al. (2013),
Remy-Ruyer et al. (2014)

The low-[Fe/H] tail of the MDF

Pop III stars IMF \rightarrow [10-140] $M_{\text {sun }}$ and explode as faint SN
Pop IIIIII transition criterium \rightarrow degenerate with the Pop III IMF

Metallicity distribution of C-rich stars

Relative fraction of C-rich and C-normal stars

data points from Yong et al. (2013)
de Bennassuti et al 2014

When do the low-[Fe/H] tail of the MDF of C-rich and C-normal stars form?

Galaxy formation with radiative and chemical feedback

GAMESH, a new pipeline integrating the latest release of cosmological radiative transfer code CRASH (Graziani+ 2013) with the semi-analytic model of galaxy formation GAMETE, powered by an N-body simulation (Salvadori+2010, Kawata+2010)

The cosmic assembly of the Milky Way

N -body simulation of a MW-sized halo in Planck cosmology

 GCD+ code with multi-resolution technique (Kawata \& Gibson 03):Low-res spherical region of $R_{I} \sim 20 h^{-1} \mathrm{Mpc}$ taken from a low-res cosmological simulation High-res spherical region of $R_{h} \sim 2 h^{-1} \mathrm{Mpc}$ with $\mathrm{M}_{\mathrm{p}}=3.4 \times 10^{5} \mathrm{M}_{\text {sun }}$

The Milky Way reionisation simulation

redshift evolution of the HII fraction

and of the gas temperature

Slice cuts (distances in cell units 1 cell $=15.6 \mathrm{~h}^{-1} \mathrm{kpc}$)

The Milky Way reionisation simulation

effects of inhomogeneous radiative feedback

Temperature contours:
$\mathrm{T} \sim 100,4 \times 10^{3}, 10^{4}, 1.3 \times 10^{4}, 1.5 \times 10^{4} \mathrm{~K}$

Summary

* the Pop III IMF is likely to be top-heavy and characterized by masses of 10s - 1000s Msun
*metals and dust grains produced by the first Pop III SNe have important effects on the stellar mass scales
* dust grains condensed in the ejecta of the first SN allow the formation of the first low mass stars $\leq 1 \mathrm{M}_{\text {sun }}$ at $Z_{\text {cr }}>10^{-6} Z_{\text {sun }}$
* stellar archaeology is a fundamental benchmark for theoretical models

