

First stars and their local relics

Raffaella Schneider INAF/Osservatorio Astronomico di Roma

the FIRST team and collaborators

Matteo de Bennassuti, PhD INAF/OAR

Stefania Marassi, Pdoc INAF/OAR

Luca Graziani, Pdoc INAF/OAR

Rosa Valiante, Pdoc INAF/OAR

Marco Limongi INAF/OAR

Stefania Salvadori

Simone Bianchi INAF/OAA Kepteyn, Groningen

Andrea Ferrara Scuola Normale

Gen Chiaki

Kazu Omukai Tokyo University Tohoku University

http://www.oa-roma.inaf.it/FIRST/

the formation of the first stars

Standard model for the formation of the first Pop III stars predicts an IMF dominated by high-mass stars

Omukai et al. 2005

An ab-initio calculation of the Pop III IMF

the end-products of Pop III stars

Heger & Woosley (2002), Yoon et al (2012), Marassi et al. in prep

the end-products of Pop III stars

Heger & Woosley (2002), Yoon et al (2012), Marassi et al. in prep

H₂, metal and dust-driven fragmentation: three different mass-scales

stellar archaeology with the most metal poor stars

[Fe/H] < -3 [Fe/H] < -5

Survey	Effective sky coverage	Effective mag limit	N < -3.0 (EMP)	N < -5.0 (HMP)	People
HES	6,400 deg ²	B < 16.5	200	2	Christlieb et al.
SEGUE	1,000 deg ²	<i>B</i> < 19	(1,000)	(10)	Beers et al.; Caffau et al.
LAMOST	12,200 deg ²	<i>B</i> < 18.0	(3,000)	(30)	Zhao et al.
SSS	20,000 deg ²	B < 17.5	(2,500)	(25)	Keller et al.

2014 Nature, 506, 463

A single low-energy, iron-poor supernova as the source of metals in the star SMSS J031300.36-670839.3

S. C. Keller¹, M. S. Bessell¹, A. Frebel^{*}, A. R. Casey¹, M. Asplund¹, H. R. Jacobson^{*}, K. Lind^{*}, J. E. Norris¹, D. Yong¹, A. Heger⁺, Z. Magic¹, G. S. Da Costa¹, B. P. Schmidt¹, & P. Tisserand¹

[Fe/H] < -7.1

the metallicity distribution function of the Galactic halo

Schörck et al. 2009 Christlieb 2013

carbon-enhanced metal poor stars

~ 20 % of stars with [Fe/H] < -2 are C-enhanced: [C/Fe] > 0.7

Yong et al. 2013; Norris et al. 2013

The frequency of CEMP-no stars

Questions that we want to address:

What are the formation pathways of C-normal and C-rich stars?

What are the physical processes that shape the low-[Fe/H] tail of the MDF?

Why is the relative fraction of C-normal and C-rich stars varying with [Fe/H]?

simulating the birth environment of **C-normal and C-rich stars**

a single formation pathway based on dust-driven fragmentation

GAlaxy MErger Tree and Evolution

Salvadori et al. 2007, 2008, 2009; Valiante et al. 2011, 2014; de Bennassuti et al. 2014

GAMETE

GAlaxy MErger Tree and Evolution

Salvadori et al. 2007, 2008, 2009; Valiante et al. 2011, 2014; de Bennassuti et al. 2014

The MW and its dusty progenitors

The MW and its dusty progenitors

de Bennassuti et al 2014

The low-[Fe/H] tail of the MDF

Pop III stars IMF \rightarrow [10-140] M_{sun} and explode as faint SN

Pop III/II transition criterium \rightarrow degenerate with the Pop III IMF

Metallicity distribution of C-rich stars

Relative fraction of C-rich and C-normal stars

data points from Yong et al. (2013)

de Bennassuti et al 2014

When do the low-[Fe/H] tail of the MDF of C-rich and C-normal stars form?

Galaxy formation with radiative and chemical feedback

GAMESH, a new pipeline integrating the latest release of cosmological radiative transfer code CRASH (Graziani+ 2013) with the semi-analytic model of galaxy formation GAMETE, powered by an N-body simulation (Salvadori+2010, Kawata+2010)

Graziani+2015

The cosmic assembly of the Milky Way

N-body simulation of a MW-sized halo in Planck cosmology

GCD+ code with multi-resolution technique (Kawata & Gibson 03): Low-res spherical region of $R_1 \sim 20 h^{-1} Mpc$ taken from a low-res cosmological simulation High-res spherical region of $R_h \sim 2 h^{-1} Mpc$ with $M_p = 3.4 \times 10^5 M_{sun}$

Graziani+2015

The Milky Way reionisation simulation

Slice cuts (distances in cell units 1 cell = $15.6 h^{-1} kpc$)

Graziani+2015

The Milky Way reionisation simulation

effects of inhomogeneous radiative feedback

Z = 12

Z = 10

Z = 6

Temperature contours: T ~ 100, 4 x 10³, 10⁴, 1.3 x 10⁴, 1.5 x 10⁴ K

Summary

- * the Pop III IMF is likely to be top-heavy and characterized by masses of 10s – 1000s Msun
- *metals and dust grains produced by the first Pop III SNe have important effects on the stellar mass scales
- * dust grains condensed in the ejecta of the first SN allow the formation of the first low mass stars \leq 1 M_{sun} at Z_{cr} > 10⁻⁶ Z_{sun}
- * stellar archaeology is a fundamental benchmark for theoretical models