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the formation of  the first stars 
Standard model for the formation of  the first Pop III stars predicts 

an IMF dominated by high-mass stars  

 
!  collapse of  ≈ 106 Msun mini-halos at z ≈ 20 

!  H2 cooling   

!  gas cloud becomes Jeans unstable Mjeans ≈ 103 Msun  

Omukai et al. 2005 

Mjeans 

NLTE H2 cooling 

NLTE " LTE  

3body  
H2 formation  

optically thick 
to H2 line   

H2 collision  
induced  
emission  

optically  
thick   

 H2 dissociation  

 hydro-static core:  
0.01 Msun 

Mjeans ≈ 103 Msun  

➡  accretion rate dM/dt ≈ MJ/tff  ≈ cs
3/G ≈ T3/2 (x 100 larger than @ Zsun) 

➡  accreted gas mass M★ ≅  [10 – 1000] Msun 

Mjeans ≈ 103 Msun  

Core 
 

0.01 Msun 

accretion shock 

Omukai & Palla 2003; Bromm et al 2004; O’Shea et al. 2007; 
Tan & McKee 2004; McKee & Tan 2008; Hosokawa et al. 2011,2012; 

Hirano+14, Susa+14; Hirano+15 



An ab-initio calculation of  the Pop III IMF 

Hirano et al. 2015 
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background no LW 

background 



the end-products of  Pop III stars 

Pop III IMF ? 

M* 

Mch ≈ 40 – 100 Msun 

BH 
formation 

10 Msun < M* < 40 Msun 

metal production 

 140 Msun < M* < 260  Msun 
metal production  

metal production non-rotating 

Heger & Woosley (2002), Yoon et al (2012), Marassi et al. in prep 



the end-products of  Pop III stars 

Pop III IMF ? 

M* 

Mch ≈ 30  

10 Msun < M* < 40 Msun 

metal production 

 140 Msun < M* < 260  Msun 
metal production  

metal production non-rotating 

Heger & Woosley (2002), Yoon et al (2012), Marassi et al. in prep 
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OI, CII 

metal-line cooling: 

Z > 10-4 Zsun 

Mjeans > 10 Msun 

dust cooling: 

Z > 10-6 Zsun 

Mjeans < 1 Msun 

Bromm et al. (2001) 
Bromm & Loeb (2003) 
Santoro & Shull (2004)  

RS et al. (2002,2003,2006),  
Omukai et al. (2005)  

Z = 0 

Z = 10-7Zsun 

Z = 10-6Zsun 

Z = 10-5Zsun 

Z = 10-4Zsun 
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H2, metal and dust-driven fragmentation:  
three different mass-scales 

H2-line cooling: 
Mjeans ~ 103 Msun 

Abel+(2002) 
Bromm+(2002)  
Yoshida+(2008)  



stellar archaeology  
with the most metal poor stars  

[Fe/H] < -3 [Fe/H] < -5 

2014 Nature, 506, 463  

[Fe/H] < -7.1  



 the metallicity distribution function  
of  the Galactic halo 
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Schörck et al. 2009 
Christlieb   2013 



carbon-enhanced metal poor stars 

[C/Fe] > 0.7 

 CEMP – r/s     
 mass transfer from an AGB companion  
                      in binary systems 

CEMP – no        
metal yields from faint SNe with  
                    mixing/fallback 

~ 20 % of  stars with [Fe/H] < -2 are C-enhanced: [C/Fe] > 0.7 

Yong et al. 2013; Norris et al. 2013 

80%	
  



The frequency of  CEMP-no stars 
Placco et al. 2014 

[Fe/H]≤ −2.0, 20% exhibit [C/Fe]≥ +0.7 
[Fe/H]≤ −3.0, 43% exhibit [C/Fe]≥ +0.7 
[Fe/H]≤ −4.0, 81% exhibit [C/Fe]≥ +0.7 
 



Why is the relative fraction of  C-normal and C-rich stars varying with [Fe/H] ? 

What are the physical processes that shape the low-[Fe/H] tail of  the MDF ? 
	
  

What are the formation pathways of  C-normal and C-rich stars? 
	
  

Questions that we want to address: 



simulating the birth environment of  
C-normal and C-rich stars 

SDSS	
  J102915+172927	
  
[Fe/H]	
  =	
  -­‐4.99	
  

Caffau	
  et	
  al	
  11	
  

SMSS	
  J031300.36-­‐670839.3	
  
[Fe/H]	
  <	
  -­‐7.1	
  

Keller	
  et	
  al	
  14	
  

C NO Mg Si Ca Ti Fe Ni Sr

C NO Mg Si Ca Ti Fe Ni Sr

Schneider et al. 2012 Marassi et al. 2014 

Pop III core-collapse SNe 
Mstar = 20, 35 Msun  

Pop III faint SNe 
Mstar =  50, 80 Msun  



simulating the birth environment of  
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Schneider et al. 2012 

Marassi et al. 2014 

Silicate dust  
Mdust ~ 0.4 Msun 

0.2 < fsil < 0.6 

Carbon dust  
Mdust ~ 0.05 - 0.2 Msun 

0.01 < fcarb < 0.84 



simulating the birth environment of  
C-normal and C-rich stars 

SDSS	
  J102915+172927	
  
[Fe/H]	
  =	
  -­‐4.99x	
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Marassi et al. 2014 

a single formation pathway based on dust-driven fragmentation 
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GAMETE 
GAlaxy MErger Tree and Evolution  

Salvadori et al. 2007, 2008, 2009; Valiante et al. 2011, 2014; de Bennassuti et al. 2014 

GAMETE 



dark matter halo merger tree star formation and chemical evolution 
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GAMETE 
GAlaxy MErger Tree and Evolution  

Salvadori et al. 2007, 2008, 2009; Valiante et al. 2011, 2014; de Bennassuti et al. 2014 

GAMETE 



The MW and its dusty progenitors 

de Bennassuti et al 2014 

global properties of  the MW 2-phase structure of  the ISM Pop III and Pop II SFRs 

average	
  over	
  50	
  independent	
  merger	
  trees	
  

1	
  –	
  σ	
  	
  



The MW and its dusty progenitors 
de Bennassuti et al 2014 

data points: 
sample of  local 
Virgo galaxies  

Corbelli et al. (2012) 

data points: 
sample of  GRB hosts  

0.1 < z < 6.3  Zafar & Watson (2013) 
Local dwarfs Galametz et al. (2011) 

Madden et al. (2013),  
Remy-Ruyer et al. (2014) 

gas and dust scaling relations 

dust-to-gas ratio  
vs metallicity 



The low-[Fe/H] tail of  the MDF 
Pop III stars  

       [10 – 300] Msun 
ordinary ccSN 

pair instability SN 

Pop III stars  
       [10 – 300] Msun 

Faint SN 
pair instability SN 

Pop III stars  
       [10 – 140] Msun 

Faint SN 
 

Pop III/II  
dust-driven 
transition 

 Dcr =4.4 x 10-9 

Pop III/II 
metal-driven 

transition 
 

Dtrans > -3.5 

 Pop III stars IMF "  [10-140] Msun and explode as faint SN 

Pop III/II transition criterium " degenerate with the Pop III IMF 

de Bennassuti et al 2014 



Metallicity distribution of  C-rich stars 

Pop III/II  
dust-driven 
transition 

 Dcr =4.4 x 10-9 

Pop III/II 
metal-driven 

transition 
 

Dtrans > -3.5 

de Bennassuti et al 2014 



Relative fraction of  C-rich and C-normal stars 

de Bennassuti et al 2014 

data points from Yong et al. (2013) 



When do the low-[Fe/H] tail of  the MDF of   
C-rich and C-normal 

stars form? 

de Bennassuti et al 2014 

the “excess” stars are  
predicted to form 

at 15 < z < 5 
 

interplay between chemical 
and radiative feedback effects 

 



Galaxy formation with radiative and chemical feedback 

GAMESH, a new pipeline integrating the latest release of  cosmological  
radiative transfer code CRASH (Graziani+ 2013) with the semi-analytic model of  galaxy  
formation GAMETE, powered by an N-body simulation (Salvadori+2010, Kawata+2010)  

 

Graziani+2015 



The cosmic assembly of  the Milky Way 

Graziani+2015 

N-body simulation of  a MW-sized halo in Planck cosmology 
GCD+ code with multi-resolution technique (Kawata & Gibson 03): 
Low-res spherical region of   Rl  ~ 20 h-1 Mpc taken from a low-res cosmological simulation 
High-res spherical region of  Rh ~ 2 h-1 Mpc with  Mp = 3.4 x 105 Msun   

  
 



redshift evolution of  the HII fraction  

Graziani+2015 

The Milky Way reionisation simulation  
 

      and of  the gas temperature  

Slice cuts (distances in cell units 1 cell = 15.6 h-1 kpc) 



The Milky Way reionisation simulation  
 

Graziani+2015 

effects of  inhomogeneous radiative feedback 

Z = 12 Z = 10 Z = 6 
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Temperature contours: 
T ~ 100, 4 x 103, 104, 1.3 x 104, 1.5 x 104 K 



Summary 

 
#  the Pop III IMF is likely to be top-heavy and characterized by masses of   
     10s – 1000s Msun 

# metals and dust grains produced by the first Pop III SNe have important effects  
    on the stellar mass scales 
 
#  dust grains condensed in the ejecta of  the first SN allow the formation of   
     the first low mass stars ≤ 1 Msun at Zcr > 10-6 Zsun 
 
#  stellar archaeology is a fundamental benchmark for theoretical models 
      
 
 


