

The chemical evolution of the smallest Milky Way satellites: Boötes I

Donatella Romano INAF–Osservatorio Astronomico di Bologna

Collaborators: M. Bellazzini (OABo), E. Starkenburg (UVIC), R. Leaman (IAC) F. Calura (OABo), A. D'Ercole (OABo), C. G. Few (UExeter)

Image credits: left: Alexander Jamieson (Celestial Atlas, 1822); center and right: V. Belokurov and SDSS-II collaboration

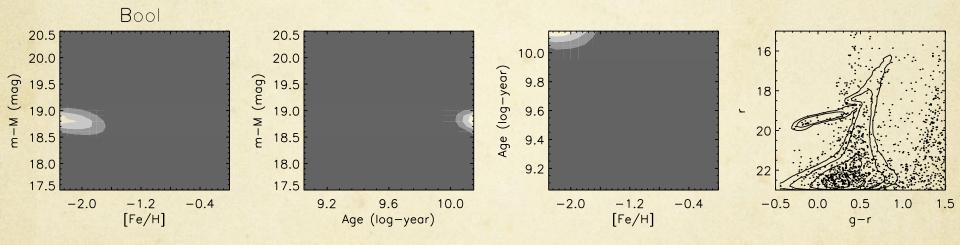
Outline of the talk

- Basic facts about Boötes I
- Chemical evolution models
- Comparison: model predictions vs observations
- Conclusions
- Future work

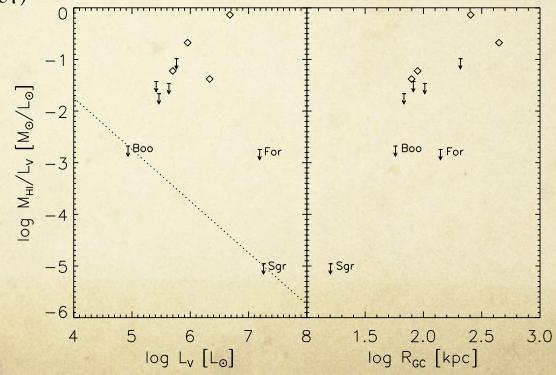
Recently discovered (Belokurov+06) 0

THE ASTROPHYSICAL JOURNAL, 647: L111–L114, 2006 August 20 © 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A.

A FAINT NEW MILKY WAY SATELLITE IN BOOTES


V. BELOKUROV,¹ D. B. ZUCKER,¹ N. W. EVANS,¹ M. I. WILKINSON,¹ M. J. IRWIN,¹ S. HODGKIN,¹ D. M. BRAMICH,¹
J. M. IRWIN,¹ G. GILMORE,¹ B. WILLMAN,² S. VIDRIH,¹ H. J. NEWBERG,³ R. F. G. WYSE,⁴ M. FELLHAUER,¹ P. C. HEWETT,¹
N. COLE,³ E. F. BELL,⁵ T. C. BEERS,⁶ C. M. ROCKOSI,⁷ B. YANNY,⁸ E. K. GREBEL,⁹ D. P. SCHNEIDER,¹⁰ R. LUPTON,¹¹
J. C. BARENTINE,¹² H. BREWINGTON,¹² J. BRINKMANN,¹² M. HARVANEK,¹² S. J. KLEINMAN,¹² J. KRZESINSKI,^{12,13} D. LONG,¹²
A. NITTA,¹² J. A. SMITH,¹⁴ AND S. A. SNEDDEN¹² *Received 2006 April 17; accepted 2006 June 30; published 2006 August 15*

ABSTRACT


We announce the discovery of a new satellite of the Milky Way in the constellation of Bootes at a distance of ~60 kpc. It was found in a systematic search for stellar overdensities in the north Galactic cap using Sloan Digital Sky Survey Data Release 5. The color-magnitude diagram shows a well-defined turnoff, red giant branch, and extended horizontal branch. Its absolute magnitude is $M_V \sim -5.8$ mag, which makes it one of the faintest galaxies known. The half-light radius is ~220 pc. The isodensity contours are elongated and have an irregular shape, suggesting that Boo may be a disrupted dwarf spheroidal galaxy.

Subject headings: galaxies: dwarf – galaxies: individual (Bootes) – Local Group

- Recently discovered (Belokurov+06)
- Old stellar population (de Jong+08; Hughes+08)

- Recently discovered (Belokurov+06)
- Old stellar population (de Jong+08; Hughes+08)
- No HI (Bailin & Ford 2007)

- Recently discovered (Belokurov+06)
- Old stellar population (de Jong+08; Hughes+08)
- No HI (Bailin & Ford 2007)
- $D = 66 \pm 2 \text{ kpc}$ (McConnachie 2012)

- Recently discovered (Belokurov+06)
- Old stellar population (de Jong+08; Hughes+08)
- No HI (Bailin & Ford 2007)
- $D = 66 \pm 2 \text{ kpc}$ (McConnachie 2012)
- $M_V = -6.3 \pm 0.2 \text{ mag}$ (McConnachie 2012)

- Recently discovered (Belokurov+06)
- Old stellar population (de Jong+08; Hughes+08)
- No HI (Bailin & Ford 2007)
- $D = 66 \pm 2 \text{ kpc}$ (McConnachie 2012)
- $M_V = -6.3 \pm 0.2 \text{ mag}$ (McConnachie 2012)
- $M_{stars} = 3 6 \times 10^4 M_{\odot}$ (McConnachie 2012)

- Recently discovered (Belokurov+06)
- Old stellar population (de Jong+08; Hughes+08)
- No HI (Bailin & Ford 2007)
- $D = 66 \pm 2 \text{ kpc}$ (McConnachie 2012)
- $M_V = -6.3 \pm 0.2 \text{ mag}$ (McConnachie 2012)
- $M_{stars} = 3 6 \times 10^4 M_{\odot}$ (McConnachie 2012)
- $r_h = 242 \pm 21 \text{ pc}$ (McConnachie 2012)

- Recently discovered (Belokurov+06)
- Old stellar population (de Jong+08; Hughes+08)
- No HI (Bailin & Ford 2007)
- $D = 66 \pm 2 \text{ kpc}$ (McConnachie 2012)
- $M_V = -6.3 \pm 0.2 \text{ mag}$ (McConnachie 2012)
- $M_{stars} = 3 6 \times 10^4 M_{\odot}$ (McConnachie 2012)
- $r_h = 242 \pm 21 \text{ pc}$ (McConnachie 2012)
- $M_{dyn}(\leq r_h) = (0.081 2.36) \times 10^7 M_{\odot}$ (Wolf+10; Koposov+11)

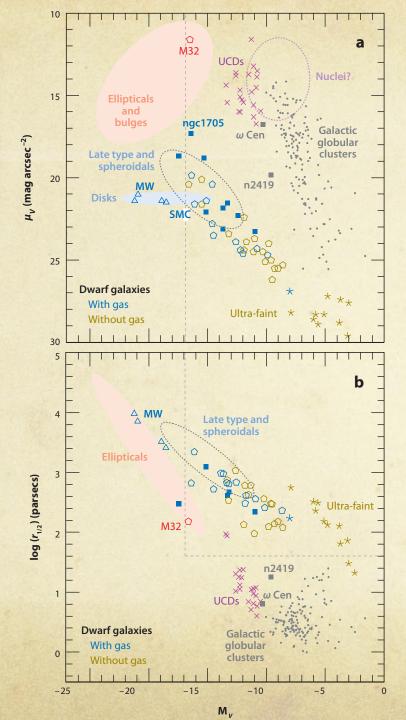


Figure from Tolstoy, Hill & Tosi (2009)

Chemical composition

Large star-to-star variation in Fe (Norris+08; Feltzing+09; Norris+10; Lai +11; Gilmore+13; Ishigaki+14), in stark contrast with the lack of evidence for [Fe/H] variations in GGCs of similar mass (Gratton +04)

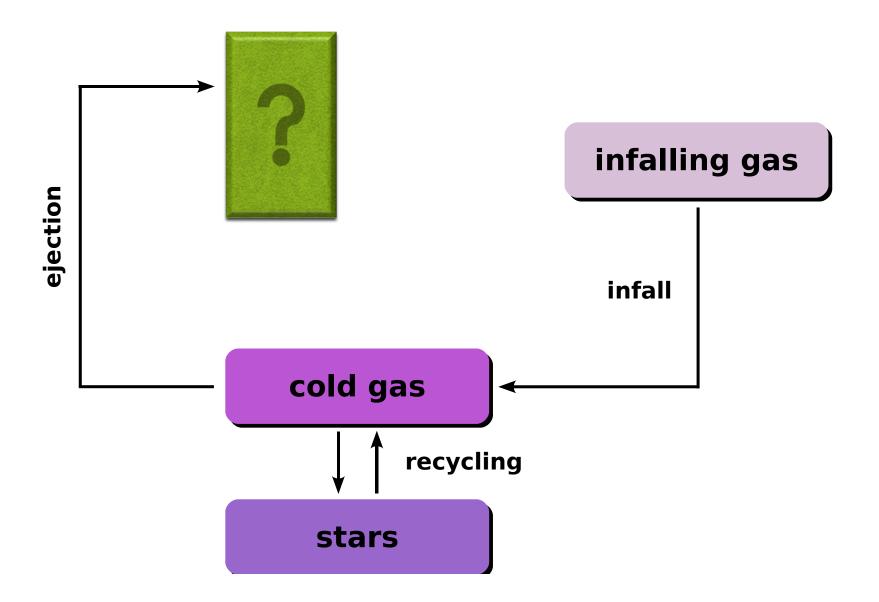
Ability to retain metals

- Type Ia SN signature (declining [α /Fe] abundance ratio)?
- Inhomogeneities?

Chemical composition

Large star-to-star variation in Fe (Norris+08; Feltzing+09; Norris+10; Lai +11; Gilmore+13; Ishigaki+14), in stark contrast with the lack of evidence for [Fe/H] variations in GGCs of similar mass (Gratton +04)

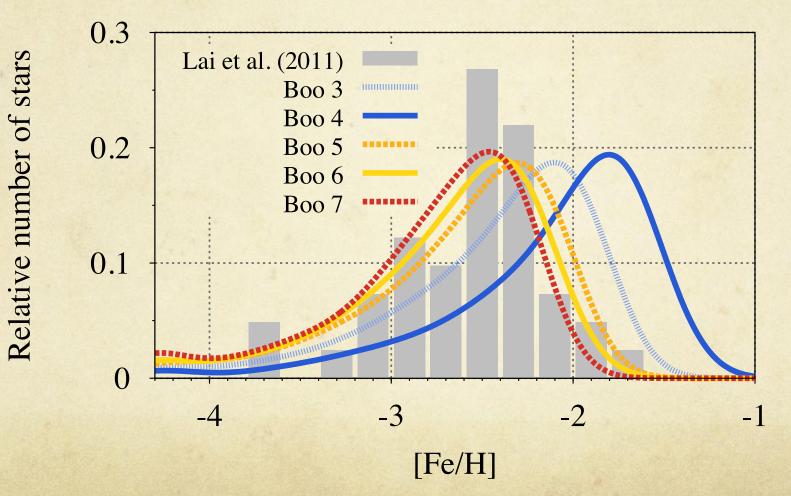
Ability to retain metals


• Type Ia SN signature (declining [α /Fe] abundance ratio)?

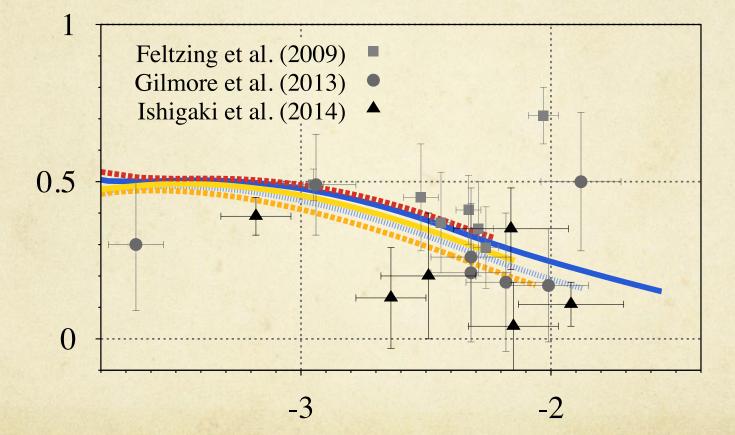
• Inhomogeneities? Anti-correlations?

Chemical evolution models

- Follow the evolution of the abundances of several elements (H, He, C, N, O, Na, Mg, Al, Si, S, Ca, Sc, Ti, Cr, Mn, Co, Ni, Fe, Cu, Zn, Eu)
- Model assumptions:
 - Inflow of gas of primordial chemical composition provides the raw material for star formation (exponentially decreasing in time, $e^{-t/\tau}$)
 - Galactic outflows remove gas from the system
 - The stellar IMF (Kroupa 2001) is constant in space and time
 - Finite stellar lifetimes taken into account

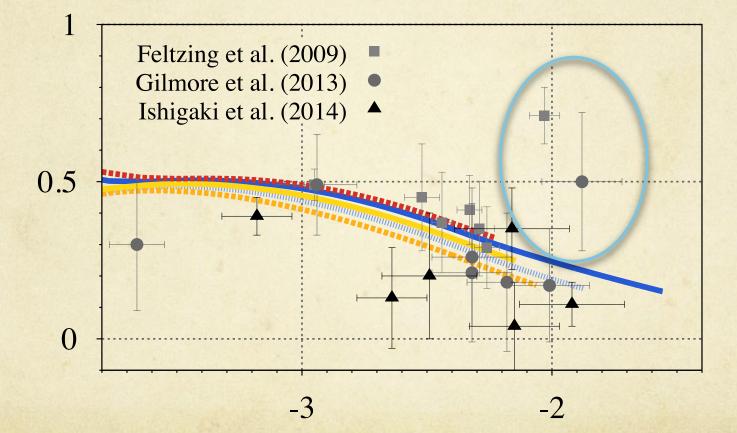

Baryon flows

Model parameters


Model	$M_{b} (\mathbf{M}_{\odot})$	T (Myr)	$r_h/r_{\rm DM}$	$M_{\rm DM}~({ m M}_{m O})$	$oldsymbol{arepsilon}_{ ext{th}}$	${m u}_{ m SF}$ (Gyr ⁻¹)	Δt _{SF} (Gyr)	<[Fe/H]>
Boo1	2×10^{6}	50	0.1	2×10^{6}	0.01	0.02	1	-2.24
Boo2	2×10^{6}	50	0.1	2×10^{6}	0.1	0.02	1	-2.25
Boo3	2×10^{6}	50	—	_	0.01	0.02	1	-2.24
Boo4	2×10^{6}	50	0.1	2×10^{6}	0.01	0.04	1	-1.92
Boo5	1.1×10^{7}	50	0.1	1.1×10^{8}	0.1	0.013	1	-2.44
Boo6	1.1×10^{7}	50	0.1	1.1×10^{8}	0.1	0.026	0.5	-2.52
Boo7	1.1×10^{7}	50	0.1	1.1×10 ⁸	0.01	0.053	0.25	-2.60
Boo8	1.1×10 ^{7,} 10 ⁵	50	0.1	1.1×10 ⁸	0.01	0.053, 4.0	0.25, 0.02	-2.60 -2.46
Boo9	1.1×10^{7}	50	0.1	6.5×10 ⁷	0.1	0.013	1	-2.44

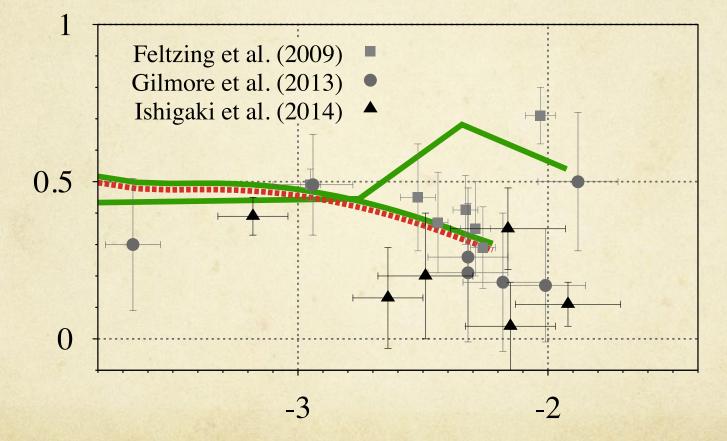
Stellar MDF

[Mg/Fe]


[Mg/Fe] versus [Fe/H]

[Fe/H]

[Mg/Fe]


[Mg/Fe] versus [Fe/H]

[Fe/H]

[Mg/Fe]

[Mg/Fe] versus [Fe/H]

[Fe/H]

Inhomogeneities: empirical relation (Leaman 2012)

THE ASTRONOMICAL JOURNAL, 144:183 (13pp), 2012 December

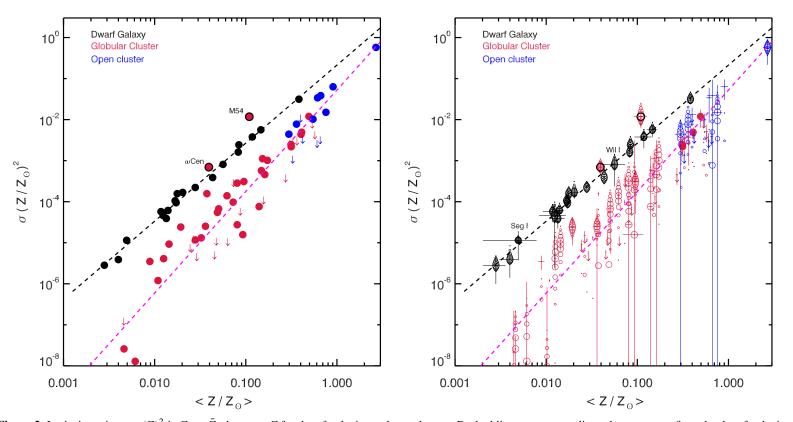
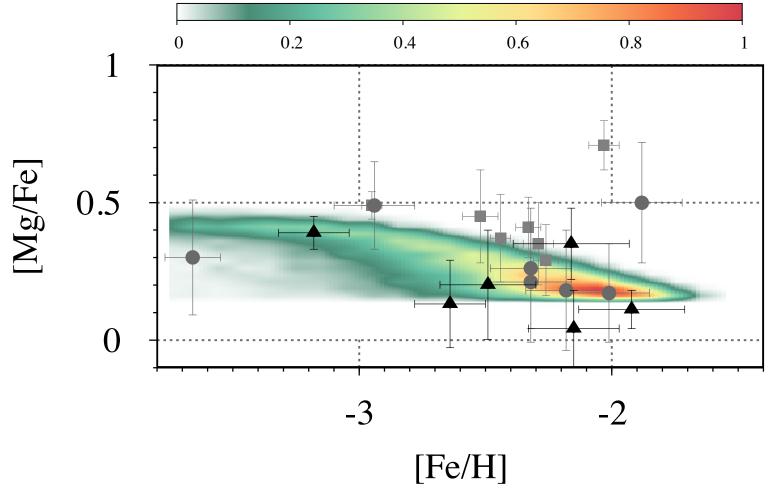
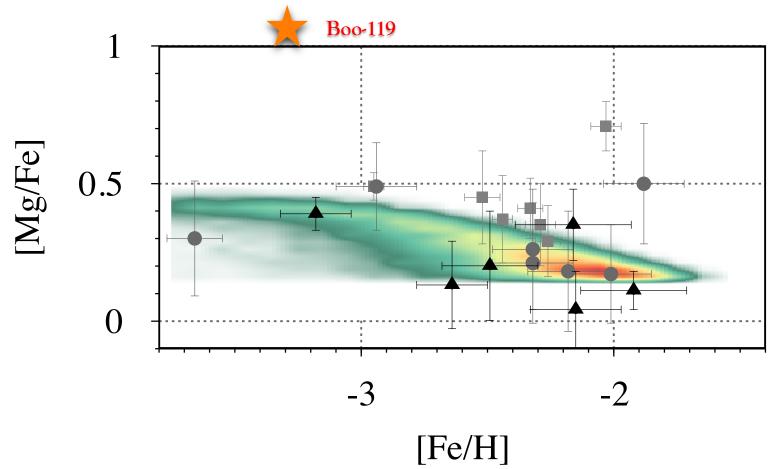




Figure 2. Intrinsic variance $\sigma(Z)^2$ in Z vs. \bar{Z} , the mean Z for dwarf galaxies and star clusters. Dashed lines represent a linear least-squares fit to the dwarf galaxies (black) and star clusters (magenta). Arrows indicate upper limits to the intrinsic dispersions. There is a clear separation between the dwarf galaxy and star cluster seq error. Form stars following a Gaussian distribution in Z values with $\log \sigma(Z)^2 = a + b \log(\langle Z \rangle)$ a=-0.6888970, b=1.88930

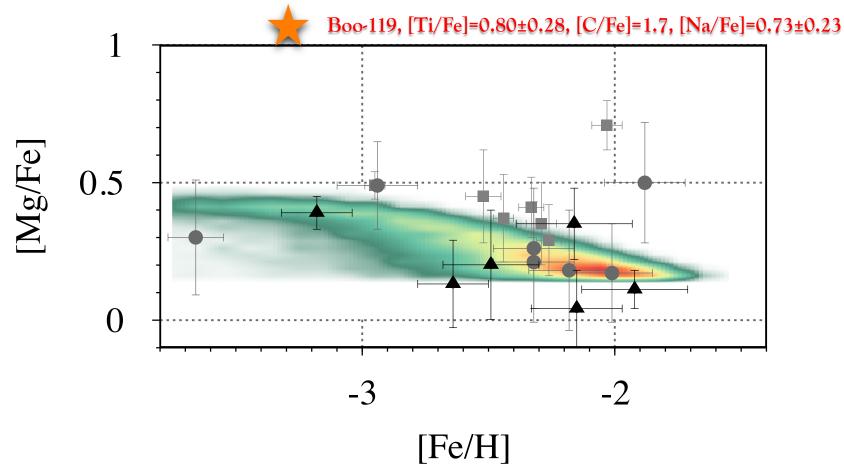


Figure from Romano+15

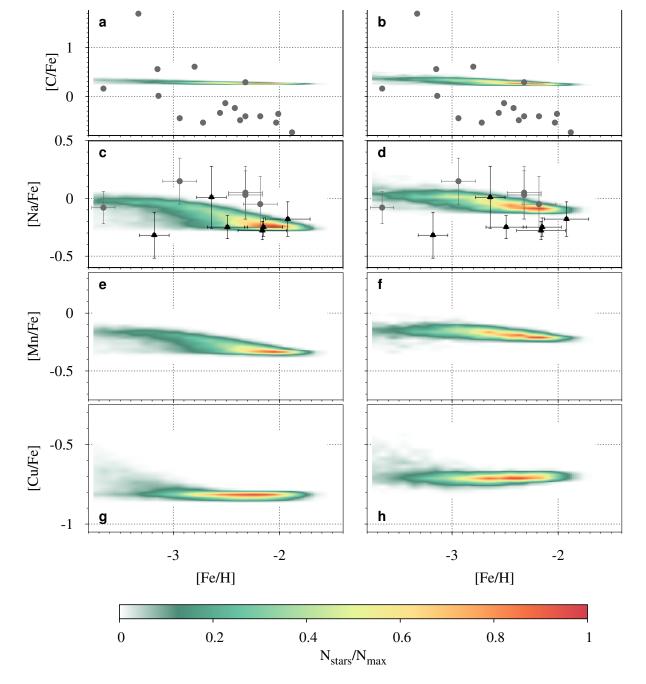
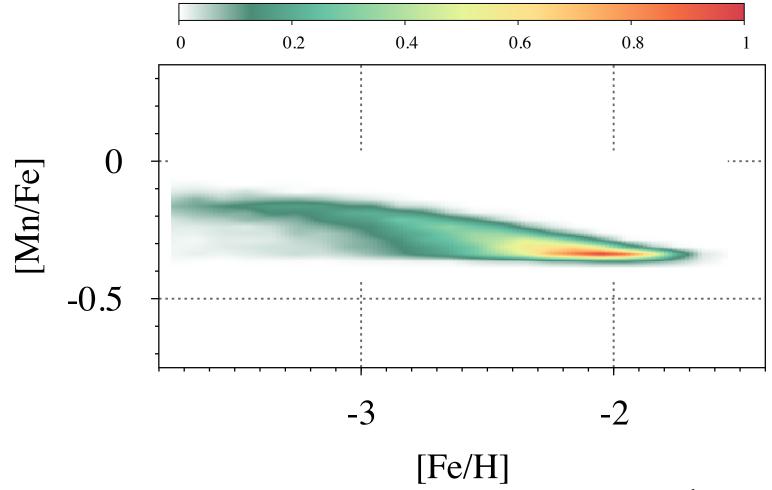
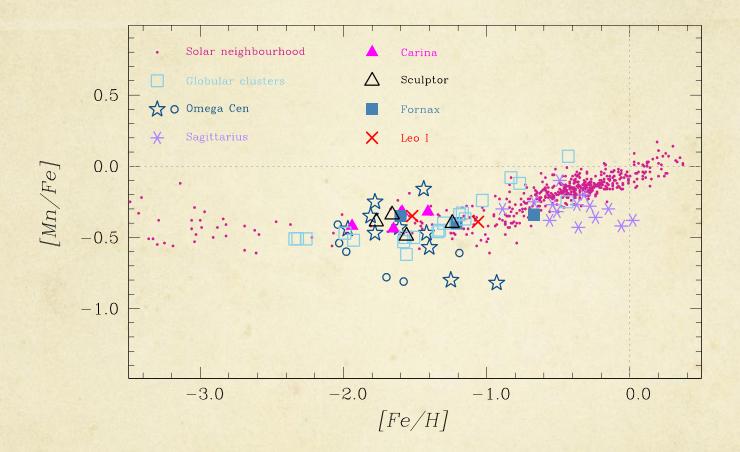
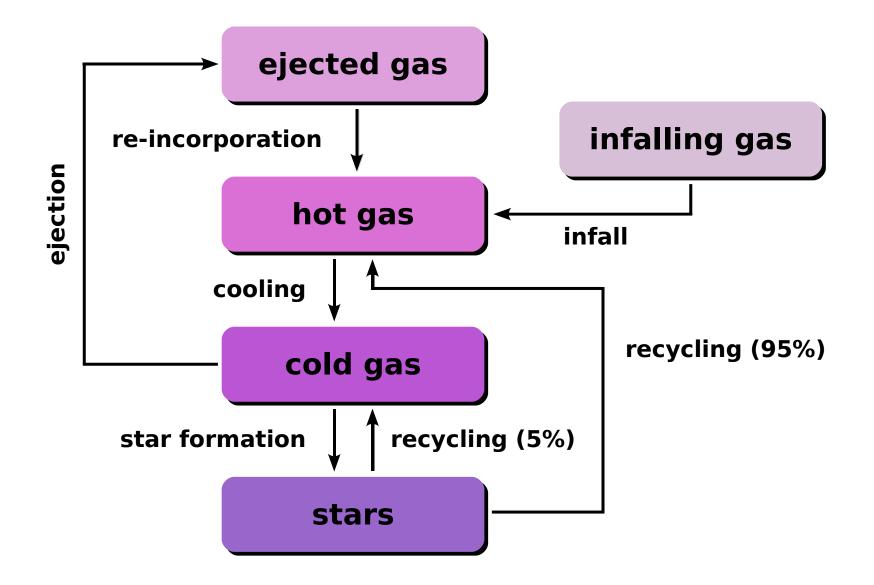




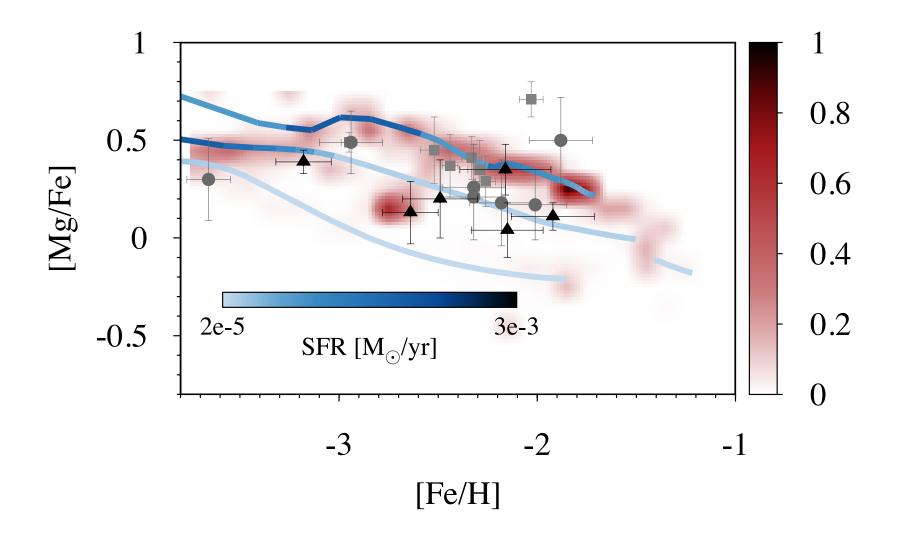
Figure 9. Same as Fig. 8 for C (panels a, b), Na (panels c, d), Mn (panels e, f) and Cu (panels g, h). Carbon data from Norris et al. (2010a) and Lai et al. (2011, one star).



[Mn/Fe] versus [Fe/H] in different systems

Figure 3. Observational [Mn/Fe] versus [Fe/H] relationships for field stars in the solar neighbourhood (filled circles; Cayrel et al. 2004; Gratton et al. 2003; Reddy et al. 2003, 2006; Feltzing et al. 2007), 20 Galactic globular clusters (open squares; Gratton et al. 2006; Carretta et al. 2007; Carretta 2010, private communication), ω Cen (stars: Cunha et al. 2010; open circles: Pancino et al. 2011), Sagittarius (main body and Terzan 7, asterisks; Sbordone et al. 2007) and 4 dSphs of the Local Group (filled triangles: Carria; open triangles: Sculptor; filled squares: Fornax; crosses: Leo I; Shetrone et al. 2003).

Chemical evolution in a full cosmological context:



Cosmological context

- Take into account the effect of the environment (mergers, ram-pressure stripping, tidal stripping)
- Identify Boötes I candidates in the mock catalogue by Starkenburg+13 basing on rather loose criteria:
 - M_V in the range -6.5, -6.0 mag
 - Mostly old stellar populations (80% of stars older than 10 Gyr)
 - The galaxy is a Milky Way satellite and no further out than 150 kpc today
- Post-process for detailed chemical properties (see Romano & Starkenburg 2013)

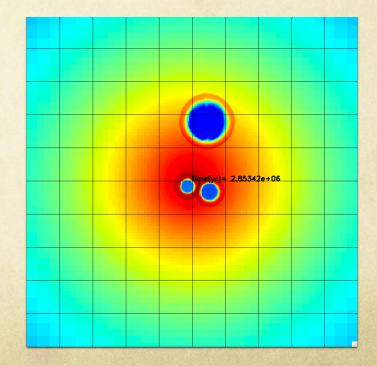
Six high-resolution Aquarius dark matter simulations (Springel et al. 2008) + semi-analytic model of galaxy formation (Li, De Lucia & Helmi 2010)

Investigate the properties of the satellites of Milky Way-like galaxies in a fully cosmological setting. Main focus on SFHs of Milky Way's satellites. Uses IRA!

Conclusions

- Boötes I must have been much more massive (2 orders of magnitude) in the past
 - Gas needed to dilute the supernova ejecta
- Only a few per cent of its baryons were converted into stars (see also Salvadori & Ferrara 2009; Vincenzo+ 2014)
- It is unlikely that supernova feedback can sustain galactic-scale outflows and vent out all the gas left over from the star formation process (but see Vincenzo et al. 2014)
 - Interaction with the environment play a fundamental role

Next step (work in progress)


19.10.2014 IS CH

F. Calura (OABo) A. D'Ercole (OABo)

C. G. Few (UExeter)

- 3D hydrodynamical simulations using RAMSES (Teyssier 2002) to study the evolution of bubbles and mixing of ejecta
- Long-term: contrast and compare GC vs UFD formation and evolution

