Tracing Chemical Evolution over the Extent of the Milky Way's Disk with APOGEE Red Giant Stars

David Nidever University of Michigan, McLaughlin Fellow

Collaborators: Bovy, Andrews, Hayden, Bird, Holtzman, Majewski, Robin, Allende Prieto, Garcia Perez, Zasowski, and more

Sexten Center for Astrophysics 2015

Evolution of the Milky Way

- Use MW as prototype to understand galaxy formation and evolution, can study in great detail
- Study the chemistry and kinematics throughout the disk
- Outstanding questions:
 - How did our Galaxy form?
 - What is the MW's star formation history?
 - Chemical and dynamical evolution?
- Most past samples very local
- APOGEE allows us to probe most of the galaxy, see through dust • Constrain chemical/dynamical evolution models

Galactic Archaeology

Heyday for Galactic chemistry and archaeology studies Current (*R*>20,000)

Name	Years	Nstars	λ	Depth	Telescope	N/S
APOGEE	2011-14	10 ⁵	NIR	H<12.5	APO	N
	2014-19	$\sim 4x10^{5}$			APO/LCO	N/S
Gaia-ESO	2011-16	10 ⁵	optical	V<19	VLT	S
GALAH	2014-17?	106	optical	V<14	AAT	S

Future (*R*>20,000)

WEAVE	2018	5x10 ⁴	optical	V<18	VHT	N
MOONS	2019	$\sim 2x10^{6}$	NIR	H<15.5	VLT	S
4MOST	2019	2x10 ⁶	optical	V<16	VISTA	S
MSE	2024	$\sim 2x10^{6}$	optical	V<19	CFHT	S

APOGEE Overview

Large, uniform, systematic survey of MW chemistry and kinematics

- Part of Sloan Digital Sky Survey (SDSS)-III
- 300 fiber, $R \ge 22,500$, cryogenic spectrograph
- NIR *H*-band $(A_H / A_V \sim 1/6)$
- S/N = 100/pixel
- 0.1 dex precision abundances for ~15 chemical elements
- 100,000+ 2MASS-selected giant stars across all Galactic populations

The APOGEE Instrument

- Built at the University of Virginia with private industry and other SDSS-III collaborators.
- The APOGEE instrument employs a number of novel technologies to achieve 300-fiber multiplexing / high resolution / infrared.

Photos by S.R. Majewski

APOGEE First Light

Below: First APOGEE+Sloan 2.5-m observations of Galactic bulge (May 2011) (in full moon, at 2 airmasses, and towards lights of El Paso).

Photo by S.R. Majewski

Example Spectra

by Drew Chojnowski

Observed Wavelength (Å)

Normalized Flux

by Drew Chojnowski

Example Spectra

APOGEE Target Selection *Colors & Magnitudes*

- Science targets
- –Use NIR/MIR RJCE method to deredden (Majewski, Zasowski & Nidever 2011)
- -Simple color-cut: $(J-K_s)_0 \ge 0.5$
- –Variable magnitude limits (H < 11-14) for both shallow and deeper probes of MW
- -Mainly luminous K and M giants (RC and RGB)
- –About ~20% "contamination" by dwarfs

Zasowski et al. (2013)

APOGEE DR12 Coverage - Observed Survey Plan

00

Commissioning field – 1-hr

90°

- 24-hr field
- 12-hr field
- 6-hr field
- 3-hr or 3 x 1-hr field
- 2 x 1-hr field
- 1-hr field

180°

146,000 stars

APOGEE Spatial Coverage

Reduction Pipeline

Nidever et al. (2015), submitted

Per Field/Star

AP1DVISIT

- Calibrate and combine visit frames • Sky subtraction • Telluric correction • Dither combination • Flux calibrate
- Initial RV

APSTAR

- Measure RVs and combine visit spectra
- Measure RV for each visit spectrum
- Combine visit spectra to create final spectrum

Velocity Uncertainties

Velocity Uncertainty Scatter from multiple measurements Peak RV scatter = ~0.08 km/s Velocity Zeropoint Comparison to 41 RV stable stars from Nidever et al. (2002) and Chubak & Marcy (2012) RV Offset (Lit - APG) = -0.36 +/- 0.03 km/s

Velocity Drift

 \Box Plate-to-plate mean RV offset errors = 0.044 km/s

Chemical Abundance Determination

<u>Abundance Pipeline</u>

- χ^2 optimization against large library of synthetic spectra
- First find stellar parameters (Teff, logg, [Fe/H], micro, ...)
- Then find individual abundances (15)

DR12 Data Products

□ APOGEE DR12 data release includes: Target selection information -Sufficient to reconstruct sampling functions Spectra across full APOGEE spectral window (1.51-1.69 µm) -Reduced, calibrated 1-D spectra with error, pixel flag, LSF vectors -S/N > 100 per pixel (Nyquist limit) Velocity data (~80 m/s precision) -Radial velocities, variability information (multiple epochs), errors Stellar atmospheric parameters from matches to synthetic libraries –Via simultaneous 7-D optimization of T_{eff} , log g, [Fe/H], [C-N-O/Fe], ξ -Uncertainties, covariances Chemical abundances (≤ 0.1 dex internal accuracy) -C, N, O, Na, Mg, Al, Si, S, K, Ca, Mn, Co, Ni, (Ti, V) □ For 163,000 unique stars; ~650,000 spectra http://www.sdss.org/dr12/ Holtzman et al. (2015), submitted

Tracing Chemical Evolution over the Extent of the Milky Way's Disk with APOGEE Red Clump Stars

Nidever et al. (2014)

Brief Disk Background

- MW vertical stellar density profile decomposed into "thin" and "thick" components (Gilmore & Reid 1983)
- From solar neighborhood samples (e.g., Fuhrmann 98, Bensby+05):

 - Thin disk, low vertical velocity dispersion, low $\lceil \alpha/\text{Fe} \rceil$, younger • Thick disk, high vertical velocity dispersion, high $\left[\alpha/\text{Fe}\right]$, older

Brief Disk Background

- MW vertical stellar density profile decomposed into "thin" and "thick" components (Gilmore & Reid 1983)
- From solar neighborhood samples (e.g., Fuhrmann 98, Bensby+05):
 - Thin disk, low vertical velocity dispersion, low [α /Fe], younger
 - Thick disk, high vertical velocity dispersion, high [α /Fe], older
- But they might not be so "distinct" (e.g. Bovy et al. 2012b)
- Thick disk formed in high-SFR (Snaith et al. 2014)
- Origin of disk variation unclear. Could be:
 - Major merger puffing older stars up
 - Disk formed "hot" and settled/cooled over time

APOGEE Red Clump Stars

- Trace chemical abundance patterns over the MW disk • Use α -element abundances of the red clump catalog (Bovy, Nidever et al. 2014)
- ~10,000 RC stars
- Standard candles, accurate distances (~5%)
- [Fe/H] > -0.9 because of APOGEE targeting $(J-K_s)_o > 0.5$ color cut
- Most stars within ~4 kpc of the sun

RC Abundances

Selection Function

Selection Function Effects

- Correcting for the selection function does not change the qualitative behavior in the α-metallicity plane
- Will work with raw numbers from here on

Qualitative Features

1. α -bimodality at intermediate metallicity

- Qualitative Features
 - 1. α -bimodality at intermediate metallicity
 - 2. Merging of two α groups at [Fe/H]~+0.2

- **Qualitative Features**
 - 1. α -bimodality at intermediate metallicity
 - 2. Merging of two α groups at [Fe/H]~+0.2
 - 3. Valley between groups not empty

- Qualitative Features
 - 1. α -bimodality at intermediate metallicity
 - 2. Merging of two α groups at [Fe/H]~+0.2
 - 3. Valley between groups not empty
 - Very similar to the local sample (~45 pc) of Adibekyan et al. (2011)

Chemical Cartography

- Chemical cartography
- Look at abundance patterns across the MW disk

Chemical Cartography

- Chemical cartography
- Look at abundance patterns across the MW disk
- Shape of the high-α stars similar in all panels
- Only varies ~10% spatially across the Galaxy

Chemical Evolution Models

- Simple, one-zone chemical evolution model (Brett Andrews)
- $SFR = SFE \times M_{gas}$
- Inflow exponential with e-folding time of 14 Gyr

• Outflow = $\eta x SFR$

Chemical Evolution Models

- Vary the two main parameters
 - $SFR = SFE \times M_{gas}$
 - Outflow = $\eta x SFR$
- evolved for 12 Gyr

 $[\alpha/Fe]$

High-α Sequence

- Fit to the high- α sequence
- SFE=4.5x10⁻¹⁰ yr⁻¹, η =1.0
- Gas consumption timescale ~2 Gyr (SFE⁻¹)
- Uniform, high-SFE in the early MW
- Contradicts simple expectation of higher SFE in inner Galaxy where densities are higher
- Uniform SFE suggests star formation in well-mixed, turbulent ISM

Two scenarios to explain these chemical abundance patterns:

SFE transition Superposition of multiple populations

- Think of the two α -sequences as two separate evolutionary sequences with different SFE:
 - 1. High- $\alpha \rightarrow$ High-SFE
 - 2. Low- $\alpha \rightarrow \text{Low-SFE}$

Two Evolutionary Sequences

High-SFE, 4.5x10⁻¹⁰

 $[\alpha/Fe]$

Low-SFE, ~1.5x10⁻¹⁰

APOGEE Sossie

SFE Transition

- 12 nearby star-forming spirals
- each point represents a 800pc x 800pc region of the galaxy

Leroy et al. (2008)

• High- α sequence SFE very close to the nearly-constant SFE in molecular-dominated regions of nearly galaxies (inner regions)

4.5x10⁻¹⁰ APOGEE-RC high- α sequence

- 12 nearby star-forming spirals
- each point represents a 800pc x 800pc region of the galaxy

Leroy et al. (2008)

varies with radius, outer regions

• Low- α sequence SFE in middle of HI-dominated region,

4.5x10⁻¹⁰ APOGEE-RC high-α sequence 1.5x10⁻¹⁰ APOGEE-RC low- α sequence

- 12 nearby star-forming spirals
- each point represents a 800pc x 800pc region of the galaxy

Leroy et al. (2008)

- Two sequences:
- High-α sequence, high-SFE, molecular-dominated, concentrated in inner Galaxy
- Low- α sequence, low-SFE, HI-dominated, concentrated in outer Galaxy

- Two sequences:
- High-α sequence, high-SFE, molecular-dominated, concentrated in inner Galaxy, older
- Low-α sequence, low-SFE, HI-dominated, concentrated in outer Galaxy, younger
- SFE transition, ~8 Gyr ago (but position dependent), between molecular-dominated to HI-dominated SF

• To also match the chemistry, need gas infall at SFE transition

- To also match the chemistry, need gas infall at SFE transition
- Infall of pristine gas, lower [Fe/H], $[\alpha/Fe]$ constant
- Low SFE and SNIa from older "High- α " population keep α low

ed gas infall at SFE transition H], [α/Fe] constant 'High-a" population keep α low

Infall of pristine gas
 ~8 Gyr ago

• Infall of significant pristine gas combined with gas depletion from early rapid SF could have triggered the transition (also suggested by Chiappini et al. 2009)

• Infall of pristine gas ~8 Gyr ago

Color/size indicates age

- Haywood et al. (2013) derived ages for the Adibekyan sample
- Solar neighborhood turnoff stars
- Fairly tight age-[α/Fe] sequence (combined and separate)
- Metal-poor low-α and metal-rich high-α overlap slightly in age

Superposition of multiple populations

Stars drawn randomly from 5 models

- Low-α group *not* an evolutionary sequence, but
- Superposition of multiple populations with different star formation and enrichment histories
- Each population has different outflow rate
- SFR exp. decline (η=1-2), constant (η=3,4)
 Radially mixed
- If outflow rate increases with radius then can *reproduce the metallicity gradient*
- Similar to Schönrich & Binney (2009a)
- Mostly reproduces the data qualitatively

Chemical Cartography with APOGEE II: Metallicity Distribution Functions and the Chemical Structure of the Milky Way Disk

Hayden et al. (2015), in preparation

RGB Chemical Pattern

• Extending the reach with ~70,000 RGB stars, 3 < R < 15 kpc

RC range

- MDF shape change with radius
 - Skew-negative in inner galaxy
 - Approximately Gaussian near solar circle
 - Skew-positive in outer galaxy

Metallicity Distribution Functions

- Chemical evolution models produce skew-negative MDFs, not skew-positive
- How did the outer galaxy get a skew-positive MDF?

Metallicity Distribution Functions

• Blurring model (no ang. mom. change) does not work

- Blurring model (no ang. mom. change) does not work
- Need dispersion of 100s of km/s to have any real effect

Metallicity Distribution Functions

• Churning (radial migration) reproduces the observed behavior

Schoenrich & Binney (2009a)

Metallicity Distribution Functions

- Blurring model (no ang. mom. change) does not work
- Churning (radial migration) reproduces the observed behavior
- We can use the chemical distributions to constrain the disk dynamics!

APOGEE-2

APOGEE 1 & 2

90°

180°

0°

Conclusions

- Selection function does not affect abundance *patterns* • Little spatial variation of high- α sequence chemical pattern (~10%) • Suggests early MW stellar evolution was in well-mixed, turbulent,
- APOGEE-1 mapped the MW with ~150,000 stars, DR12 • RC/RGB show α bimodality at intermediate metallicity, throughout MW
- molecular-dominated environment
- Two scenarios to explain low/high- α sequences: 1. SFE-transition from high to low SFE ~8 Gyr ago 2. Superposition of multiple stellar populations
- Need ages to tell the two apart, w/ Gaia in 2017
- MDFs skewness change with radius, inner-negative, outer-positive
- Radial migration

Nidever et al. (2014)

