STELLAR ABUNDANCES in CLUSTERS

High-resolution, multi-object spectroscopy of globular \& open clusters in the Milky Way

Angela Bragaglia

INAF-Oss. Astronomico Bologna

There are more surveys in heaven and earth, Horatio...

- large scale

Gaia-ESO public spectroscopic survey
P. Donati, D. Romano, M. Tosi, L. Magrini, S. Randich,
T. Cantat Gaudin, R. Sordo, A. Vallenari, E. Friel, H. Jacobson \& GES Consortium (400+)

- "private"

FLAMES GC program
E.Carretta, V. D'Orazi, R. Gratton, S. Lucatello,
A. Sollima, C. Sneden

There are more surveys in heaven and earth, Horatio...

- large scale

Gaia-ESO public spectroscopic survey

P. Donati, D. Romano, M. Tosi, L. Magrini, S. Randich,
T. Cantat Gaudin, R. Sordo, A. Vallenari, E. Friel, H. Jacobson \& GES Consortium (400+)

Way and Local Group Galaxies" (PI F. Matteucci)

- "private"

FLAMES GC program

E.Carretta, V. D’Orazi, R. Gratton, S. Lucatello,
A. Sollima, C. Sneden

The Gaia-ESO Survey in a nutshell

For information : http://www.gaia-eso.eu

- PI Randich/Gilmore
- 400+ researchers
- 300 VLT nights / 5 years (3 yrs / 32 obs runs)
- FLAMES
- $10^{5} \mathrm{MW}$ stars
- 70+ open clusters
(~30 observed)
- STD / GCs
- distributed analysis

The Gaia-ESO Survey - open clusters

core science

- Open cluster formation \& dynamics - Properties \& evolution of MW disk
- Stellar evolution

The Gaia-ESO Survey - all OCs

- 18 months
- 24 months
- 31 months
\square protected
courtesy
S. Randich

The Gaia-ESO Survey - old OCs

The Gaia-ESO Survey - old OCs

Yong+2012 \& literature [Fe/H] after 2012 ; BOCCE age,Rgc if available

The Gaia-ESO Survey - Trumpler 20

Carraro+2010

GES - Donati+ 2014

The Gaia-ESO Survey - Trumpler 20

GES - Donati+ 2014 : ~40\% M

The Gaia-ESO Survey - Trumpler 20

The Gaia-ESO Survey - inner disk OCs

OC	age	Rgc	RV	[Fe / H]	GES paper
Tr 20	1.5	6.9	-40.5 (1470)	+0.16 (13)	Donati+2014
NGC4815	0.5	6.9	-30.2 (218)	+0.03 (5)	Friel+2014
NGC6705	0.3	6.3	+34.5 (1053)	+0.10 (21)	Cantat-Gaudin+2014
Be 81	1.0	5.5	+47.6 (280)	in progress	in progress
NGC6208	0.7	7.4			observed
Be 44	1.3	7.1			observed
Pismis 18	1.2	6.8			observed
Tr 23	1.0	6.2			observed
NGC6005	1.2	6.0			observed
RV: GIRAFFE+UVES - [FE/H]: UVES					

for more details, see talk by Laura Magrini (on Tuesday)

The Gaia-ESO Survey - 3 inner disk OCs

__ chemev models Romano+2010
Trumpler 20
NGC4815
GES - Magrini+ 2014

The Gaia-ESO Survey - 3 inner disk OCs

End of first act ...

Open clusters :

> information on Galactic disk

> e.g. structure
> e.g. chemical evolution
> test of stellar models

$$
\begin{aligned}
& \text { e.g., tracks } \\
& \text { e.g., mixing mechanisms }
\end{aligned}
$$

> homogenous clusters (single populations)

GCs: setting the stage

In GCs light elements show
star-to-star variations
giants

ARA\&A 2004
~ 400 stars
$\sim 20 \mathrm{GCs}$

In field stars they do not

Field stars (Gratton+ 2000)

Our sample of clusters

- 24 massive GCs : Mv=-5.5 to -10

Piotto+2002,
HST snapshot

NGC2808

NGC6388

GCs: $\mathrm{Na} \& \mathrm{O}$ in RGB stars

Carretta+ 2009,2010, 2011,2013, 2014, ...

GCs: $\mathrm{Na} \& \mathrm{O}$ in RGB stars

GCs: $\mathrm{Na} \& \mathrm{O}$ in RGB stars

FG: P
SG:I+E

GCs: $\mathrm{Na} \& \mathrm{O}$ in RGB stars

Carretta+2009, 2010

GCs: $\mathrm{Na} \& \mathrm{O}$ in RGB stars

All creatures great and small. I. GCs

some 10^{6}
mass in \mathbf{M}_{\odot}

some 10^{4}

GCs with $\mathrm{Na}-\mathrm{O}$ anticorrelation
Carretta 2010 etc

All creatures great and small. I. GCs

\diamond Ter 7, Pal 12 : no?
\diamond Rup 106 : noTerzan 8 : yes?Be39, NGC 6791 : no

- NGC 6535, NGC 6139 : ??

Ter7:Tautvaisiene+,Sbordone+
Pal12: Coben
Rup106: Villanova+

All creatures great and small. I. GCs

FG dominates

Carretta+2014

All creatures great and small. II. OCs

MacLean, De Silva, Lattanzio 2015

All creatures great and small. II. OCs

All creatures great and small. II. OCs

Hydra@WIYN
HIRES@Keck

NGC 6791:
$\mathrm{Mv}=-4.14$; age=8 Gyr
$[\mathrm{Fe} / \mathrm{H}]=+0.4$

All creatures great and small. II. OCs

NGC 6791

All creatures great and small. II. OCs

All creatures great and small. II. OCs

All creatures great and small. II. OCs

Results \& legacy value

$>$ clusters are halo and disk (and bulge) tracers
$>$ constraints for stellar models
$>$ cover both young \& old, metal-poor \& rich populations
$>$ combine photometry, spectroscopy \& models
... wait for Gaia-ESO, APOGEE, etc and - of course - Gaia ...

IAU Symposium 317 at the 2015 IAU GA

http://www.iau.org/science/meetings/future/symposia/1124/
http://www.eso.org/~marnabol/IAU317_index.html

